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Abstract

We present JZBR, an extension of Spohn's iterated revision methodology

which allows the handling of new information expressed by conditional rank-

ing measure constraints. This is achieved by generalizing a canonical ranking

construction technique originally developed for nonmonotonic entailment, no-

tably system JZ. JZBR exploits the structure of the evidence base and is a

robust relative of semi-qualitative cross entropy minimization.

1 INTRODUCTION

Rational belief change in the face of new, potentially conicting information is a
major characteristic of intelligent behaviour. Its formalmodeling therefore has been
- and still is - a major issue in arti�cial intelligence. Although many problems are
far from being settled, important progress has been made in the past twenty years.
Most of these e�orts have been directly linked to or at least inspired from the work
of Peter G�ardenfors. The famous AGM-postulates [AGM 1985], which he presented
together with his colleagues Carlos Alchourron and David Makinson, are among
the most inuential principles in AI. His book Knowledge in Flux [G�ardenfors 88]
has been - and still is - an important compendium and source of ideas for anyone
interested in belief revision. In fact, ten years ago, a corresponding reading group
in Bonn had quite an impact on my career, and my postdoc Richard Booth just
bought a copy on the internet.

Of course, research has gone beyond his initial framework, and Peter G�ardenfors
was among the �rst to acknowledge the necessity for doing so. I �rst experienced
his friendly open-mindedness at the European Workshop for Logics in AI in 1990
(JELIA 90), where I gave a talk - my �rst one in AI - on doxastic preference logic
[Weydert 90]. In this work, I criticized AGM's \seven aws", namely its problems
with absolute knowledge, iterated revision, introspection, believing defaults, nonlin-
ear epistemic orderings, recovery, and practicality. After my presentation, he came
to me and frankly told me, : : : that I was right. Frankly, I was impressed.

In this paper, we are going to focus on iterated belief revision and default beliefs.
Traditional approaches, as exempli�ed by the original AGM-paradigm, have been
mainly concerned with one-step belief revision. That is, given - for instance - a set
of ordered beliefs together with new propositional evidence, they only tell us how to
revise the belief set, but not how to revise the the epistemic entrenchment ordering,
i.e. the control structure. This, however, would be required for implementing iter-



ated belief change in a reasonable way, obviously a necessity for real world agents.

Taking a broader perspective, we see that similar questions already have been ad-
dressed in probabilistic reasoning. According to the Bayesian paradigm, an epis-
temic state should be modeled by a probability distribution over worlds. If we
assume that new evidence can be translated into a probabilistic equality constraint
P (A) = �, we may use Je�rey conditionalization - enforcing the equality and pre-
serving the conditional probabilities P (:jA); P (:j:A) - to update the probabilistic
belief state in a canonical way. However, this doesn't allow us to revise full belief,
i.e. belief closed under conjunctions, which is expressed by P (A) = 1.

This problem can be attacked within the semi-qualitative context of Spohn's �-
ranking framework, which o�ers a popular and powerful procedure for iterated be-
lief revision exploiting order-of-magnitude probabilities [Spohn 90]. More recently,
there have been several other proposals for revising prioritized epistemic structures
[Boutilier 92, Darwiche and Pearl 97, Lehmann 95, Williams 94]. One advantage
of Spohn's revision paradigm - if we accept his model of belief - is the information-
theoretic justi�cation of probabilistic Je�rey-conditionalization. In fact, among
all those measures satisfying the probabilistic constraint encoding the evidence, it
picks up the one with the least information content relative to the prior subjective
probability measure. That is, it constitutes a special instance of cross-entropy mini-
mization (MCE), a general, well-justi�ed probabilistic update procedure [Shore and
Johnson 80, Paris and Vencovska 90] which is particularly appropriate for linear
constraints.

What is currently missing is a generalization of Spohn's revision strategy able
to deal with more general epistemic ranking constraints, in particular with sets
of conditional ranking constraints, like R(AjB) � �. A brute force method
would be to translate these conditions into in�nitesimal probability constraints,
like P (AjB) � "�, to apply MCE in this nonstandard probability context [Weydert
95], and to translate the resulting nonstandard distribution back into an extended
ranking framework. However, this approach is inadequate for several reasons.

First of all, the probabilistic translation procedure is inherently ambiguous. For
instance, although the in�nitesimals "� and (2")� are practically indiscernible and
have the same order of magnitude �, using one or the other bound for constrain-
ing P (AjB) may produce completely di�erent results. Similarly, the solution may
also change if we re�ne the boolean propositional domain of the belief valuations.
Secondly, nonstandard cross-entropy minimization is a rather cumbersome process,
di�cult to compute. It is not the canonical construction procedure we are looking
for.

In this paper, we are going to motivate and describe a more direct revision pro-
cedure for epistemic rankings which extends Spohn's account and is able to deal
with �nite sets of conditional ranking constraints. Our approach is based on the
generalization of a ranking construction technique �rst exploited in nonmonotonic
entailment, namely system JZ [Weydert 98]. The idea is to construct a canonical
model of the given constraints through iterated Je�rey conditionalization trying to
minimize the construction e�orts.

The plan of the paper is as follows. We begin by introducing the basic ranking
measure framework and the corresponding epistemic transformations. In this con-
text, we present the epistemic construction paradigm and implement complemen-
tary ideas of minimality. Based on this, we develop our revision strategy JZBR. This
is done in several steps, considering increasingly sophisticated constraint sets. Af-
ter illustrating the JZBR-technique with some examples, we discuss its relationship



with other approaches and indicate perspectives for future work.

2 STATES AND CONSTRAINTS

In the literature, epistemic states are often rudimentarily characterized by epis-
temic preference relations or valuations indicating the relative degree of plausibil-
ity attributed to di�erent propositions. However, to guarantee the comparability
of di�erent belief states and to obtain a natural notion of independency (e.g. for
constructing belief networks), we also need a reasonable notion of conditional mea-
sures. This leaves us with two basic alternatives. On the �ne-grained level, stan-
dard and nonstandard (admitting in�nitesimals) probability distributions, on the
coarse-grained level, order of magnitude or ranking measures. In this paper, we are
primarily going to be concerned with standard ��-ranking measures.

De�nition 2.1 (Standard ��-measure)
Let B � 2W be a compact boolean algebra of propositions B over a world set W.
R : B ! V = ([0;1]; 0;1;+; <) is called a standard ��-measure i�

� R(A [B) = MinfR(A); R(B)g,

� R(W) = 0, R(;) =1.

The conditional ��-measure R( j ) is de�ned by R(BjA) = R(B \ A) � R(A) for
R(A) 6= 1, and R(BjA) =1 for R(A) =1. R0 denotes the uniform ��-measure
on B, with R0(A) = 0 for all A 6= ;.

Standard ��-measures constitute a necessary generalization of Spohn's discrete-
valued �-measures and Dubois and Prade's possibility measures. They allow a sim-
ple and robust modeling of graded full belief, while preserving many concepts, tools
and features from classical probability theory. Following Spohn, ��-measures are
assumed to measure the degree of disbelief, implausibility or surprise. Accordingly,
the degree of belief in A corresponds to the degree of surprise of :A. A is believed
with strength � (at least) i� R(:A) � �. It is believed i� R(:A) > 0. ��-values
have no obvious real world meaning - comparable to the frequentist reading of prob-
abilities - but they may be interpreted as the order-of-magnitude of nonstandard
probabilities. More precisely, R(A) = � <1 would correspond to � log" P (A) � �,
R(A) =1 to P (A) = 0:

For our present purposes, iterated belief revision in a mainly propositional context,
we may impose two further simplifying conditions on epistemic ��-measure states.
First of all, we want them to be �nitely representable. Although the domain B of R
is allowed to be in�nite, there should be a �nite boolean subalgebra B0 of B s.t. for
all A 2 B, R(A) = inffR(B) j B 2 AtomB0 ; A\B 6= ;g. Furthermore, we will also
restrict ourselves to ��-measures taking only rational values. Let KPB be the set
of all �nitely representable rational ��-measures over the compact boolean algebra
B. In the following, we will assume that B is the model set algebra for propositional
logic with in�nitely many variables, although we could also have chosen �rst-order
predicate logic. KPB will then be our set of epistemic states.

When modeling or discussing belief revision, it is important to distinguish between,
on one hand, the incoming information, the general sensory or cognitive input,
and on the other hand, the interpreted, processed information translated into an
epistemic constraint. That is, we have a two phase process. First, the analysis,
interpretation and deliberation of the epistemic input, which produces an epis-
temic constraint. Secondly, the actual revision process which transforms the initial
epistemic valuation in a reasonable way so as to realize this constraint. We may



illustrate this idea in the context of Spohn's framework. here, for instance, given
a ��-measure R and new propositional evidence A, we �rst translate the input A
- by default - into the epistemic constraint R(:A) � 1 (interpretation), which we
are then going to enforce by a minimal amount of Je�rey-conditionalization for A
and :A (revision). Although both steps are equally important, in this paper, we
concentrate on the proper revision process, i.e. the update of epistemic measures
by epistemic constraints. Object-level ranking constraints are written r(AjB) � �

or r(AjB) = �.

Whereas the original approach only considered constraints of the form r(A) � �,
we are interested in arbitrary �nite sets of conditional ranking constraints � =
fr(SijS

0
i) � �i j i � ng [ fr(SijS

0
i) = 0 j i � ng, expressing the relative graded

belief, or the non-belief, in the proposition :Si given S0i. These constraints can
also be written as r(A) + � � r(A0) with 0 � � and A \A0 = ;. That is, we may
concentrate on knowledge bases of the form � = fr(Ai) + �i � r(A0i) j i � ng. Let
IB be the set of all these � over B, and for each � 2 IB, let KPB(�) be the set of
�-models in KPB. Where possible, we shall drop B.

Our task now is to �nd a revision function which associates with every coherent
pair (R;�) 2 KP � I - i.e. there is R0 2 KP(�) s.t. for all B 2 B, R(B) = 1
implies R0(B) = 1 - a natural update R0 2 KP, written R[�]. Note that we have
explicitly chosen to take into account the inner structure of the epistemic input by
using �, and not KP(�), as our argument. Whereas in base revision one considers
the representational structure of the knowledge base, here we consider the represen-
tational structure of the incoming evidence, which may convey additional implicit
information, e.g. default assumptions about di�erent sources for di�erent evidence
items. For instance, we may want to distinguish � = fr(A) � 1; r(A0) � 1g and
�0 = fr(A _ A0) � 1g, although they are veri�ed by the same ��-measures. But
whereas R0[�][r(:A) � 1] would support belief in :A0, R0[�0][r(:A) � 1] would
not, both being instances of revision with A. A more appropriate semantic descrip-
tion of the epistemic inputs therefore might be fKP(f�g) j � 2 �g.

3 RANKING CONSTRUCTIONS

Most approaches to belief revision are based on some kind of minimal change prin-
ciple. That is, the revised belief state should be the closest, most similar or most
easily accessible one satisfying the epistemic constraints encoding the new infor-
mation. This will also be our strategy, but the question is what it means in our
context. Let R and � be coherent. Roughly speaking, the idea is to choose for R[�]
that R0 2 KP(�) which can be obtained from R by a minimal epistemic ranking
model construction process. In particular, we are looking for an approach extending
Spohn-type revision and inspired from the minimal information paradigm (MCE).

The most basic epistemic transformation for ��-measures is shifting, also known
as L-conditionalization [Goldszmidt and Pearl 96]. Given a prior ��-measure R,
shifting a proposition A upwards or downwards means increasing or decreasing its
degree of surprise, i.e. strengthening or weakening belief in :A, without modifying
the conditional structure R(:jA) and R(:j:A). To ensure that the resulting valu-
ation is still a ��-measure (minfR(A); R(:A)g = 0), if R(:A) > 0, we may �rst
have to move :A to the bottom before we can shift A to its intended value. Note
that shifting steps are Je�rey-conditionalization steps.

De�nition 3.1 (L-conditionalization/shifting)
Let R be a ��-measure on B, A 2 B, and a 2 [�1;1].



If R(:A) =1, R[A+1] = R (blocking).

If R(:A) 6=1 and 0 � a, R[A+ a] is the unique ��-measure R0 such that

� R0(BjA) = R(BjA), R0(Bj:A) = R(Bj:A), for all B 2 B,

� R0(:A) � R(:A) and R(A) � R0(A),

� (R(:A)� R0(:A)) + (R0(A)� R(A)) = �.

If R(:A) 6=1 and a � 0, R[A+ a] = R[:A� a].

Shifting is commutative as long as blocking does not occur. Let us call a ��-measure
R0 epistemically constructible from R i� it is the result of an iterated shifting pro-
cess starting at R, i.e. R0 = R[A0+ a0] : : : [An+ an]. Note that the ��-measures in
KP are exactly those which are epistemically constructible from R0 with rational
parameters ai. However, for arbitrary ��-measures, constructibility may fail. On
an informal level, our revision paradigm can now be described as follows.

Minimal epistemic constructibility. For coherent (R;�) 2 KP�I, R[�] should
be that model of � which is minimally epistemically constructible from R.

Minimality can be implemented in di�erent ways. First of all, we may restrict the
set of admissible transformations [A + a], which is also necessary to avoid trivi-
alization. To achieve this, we exploit the representational structure of �. In our
framework, an epistemic constraint plays two roles. On one hand, as usual, it de-
scribes a set of ��-models. On the other hand, it is also meant to sanction epistemic
construction steps. The constraint r(A) + � � r(B) 2 I, for instance, may be seen
as a permission for shifting A downwards and B upwards. This guarantees that
the corresponding transformations [A + p], for p � 0, and [B + s], for 0 � s, will
preserve the semantic condition, once it has been realized. Other shifts are not
allowed, which keeps minimal the set of admissible transformations. R0 is said to
be epistemically constructible from R over � i� it can be obtained through trans-
formations sanctioned by �.

Minimizing e�orts also means preventing redundant, unnecessary, or unjusti�ed con-
struction steps. This calls for another basic requirement, �rst discussed in [Weydert
96].

De�nition 3.2 (Justi�able constructibility)
R0 is justi�ably constructible from R w.r.t. � = fr(Ai) + ai � r(A0i) j i � ng i�

� R0 is epistemically constructible from R w.r.t. �, i.e.
R0 = R[A0 + p0][A00 + s0] : : : [An + pn][A0n + sn] for pi � 0 � si,

� R0(Ai) + ai < R0(A0i) implies pi = si = 0.

Let Constr(R;�) be the set of R0 which are justi�ably constructible from R w.r.t.
�.

In other words, shifting only occurs if there is no overachievement of the corre-
sponding sanctioning constraint, that is if it is realized as an equality constraint.

Justi�able constructibility.
R[�] should be justi�ably constructible from R w.r.t. �.

This notion is supported by the following existence theorem, which will be validated
by our JZBR-construction.



Theorem 3.3 (Accessibility)
Let (R;�) 2 KP � I. Then

� (R;�) coherent implies KP(�) \Constr(R;�) 6= ;.

The set KP(�) \ Constr(R;�) provides a prelimary set of candidates for R[�]
from which we will pick up the closest or most easily accessible one.

4 JZBR - SINGLE CONSTRAINT

We are now going to built up our canonical revision strategy step by step, identi-
fying and implementing basic principles of minimal epistemic constructions while
considering increasingly complex epistemic constraint bases. This will be done by
generalizing the JZ-shifting formalism sketched in [Weydert 98]. In the following,
we assume that R is the prior state and � a default knowledge base coherent with
R. We start with the simplest instance, when there is only a single constraint.

� � = fr(A) + a � r(A0)g.

If R already veri�es �, minimal change enforces R[�] = R. If R doesn't, we have
several choices - shifting A0 upwards, shifting A downwards, or both. This makes
a di�erence if A [ A0 6= W. Whatever the exact procedure, minimality suggests
that the shifting process should stop as soon as the constraint is satis�ed, which
is when r(A) + a = r(A0) becomes valid. That is, after shifting A or A0, the
corresponding equality constraint should be realized. Note that this is just what
justi�able constructibility requires.

This leaves us with the question about which propositions to shift, A or A0, and to
what extent. We want to minimize the shifting e�orts, but what does this mean in
practice ? Here we are guided by two basic principles, which can be justi�ed and
validated by the cross entropy distance measure.

� Bottom before top.
Making a more plausible A less plausible is more costly than making a less
plausible A less plausible. Because it seems reasonable �rst to minimize the
most expensive - but also relevant - tasks, and because we prefer an incre-
mental approach without backtracking, we should start at the bottom.

� Upwards before downwards.
Making A more implausible is less costly than reversing this act and making
A again more plausible by the same amount. In particular, shifting A to 1
is in�nitely less costly than the converse, which is impossible.

It follows from these considerations that the best thing to do for a single constraint
is shifting A0 upwards (Note that R[:] may take di�erent meanings in our notation).

� R[r(A) + a � r(A0)] = R[A0 + �], where � = a+ R(A)� R(A0).

This solution corresponds to that proposed by cross entropy minimization translated
into the ranking context.

5 JZBR - JZ-CONSTRAINTS

The handling of constraint bases with several elements is considerably more di�-
cult because satisfying one constraint may interact with the satisfaction of other
constraints. To begin with, we restrict ourselves to constraint sets of the form



� � = fr(Ai) + ai � r(A0i) j i � ng with 0 < ai and R(W �
S
fA0i j i � ng) = 0.

This special instance of the problem is within the reach of the construction tech-
niques used for system JZ, a powerful default formalism [Weydert 98]. The JZ-
construction procedure combines the minimal epistemic construction paradigm
with the normality maximization philosophy. For any consistent � 2 I, nor-
mality maximization means picking up the - argument-wise - �-smallest ��-
measure in KP(�). Here, we are more particularly interested in relative normality
maximization, i.e. normality maximization above some reference measure R. If
fR0 j R � R0 2 KP(�)g 6= ;, we set

� NM (R;�) = MinfR0 2 KP j R � R0 2 KP(�)g.

NM (R;�) would be the ideal candidate for R[�] - if it were also justi�ably con-
structible w.r.t. �. Most often, however, NM (R;�) is not even epistemically con-
structible w.r.t. �. Nevertheless, we may try to exploit and approximate normality
maximization in the epistemic construction process. More precisely, we are going
to use it to determine optimal reference marks guiding the construction steps.

Another principle is minimal shifting or uniformity maximization. Whereas normal-
ity maximization tries to minimize the absolute ��-values, minimal shifting tries to
minimize the shifting lengths for parallel shifting tasks with the same goal value,
that is constructing the same level. This makes the shifting process more uniform.

JZ-Algorithm.
We are now going to sketch a streamlined version of the original JZ-procedure able
to start from arbitrary kp-measures. It allows us to revise constraint sets of the
above type. Let R and � be coherent. The idea is to pass from R to R[�] through
an inductive justi�able bottom-up construction process, minimizing the shifting ef-
forts at each level, i.e. maximizing normality and uniformity. More concretely, we
construct a sequence of ��-measures (Rj j j � h) with

� R0 = R, Rj+1 = Rj[A0i + si j i 2 Ij+1],

where I1 [ : : : [ Ih is a partition of I = fi j i � ng and the shifting parameters
0 � si are rational numbers. Let �j = f�i 2 � j i 2 I � I1 [ : : : [ Ijg, where
�i = r(Ai)+ ai � r(A0i), e.g. �0 = �. �j is the set of those constraints which have
not yet been taken into account at step j. At step j + 1, we �rst want to satisfy
the weakest constraints in �j , i.e. those a�ecting the lowest possible levels, and
therefore the least dependent ones. The strength of a constraint �i in the context
of Rj and � is measured by the minimal possible value A0i could take in a model of
� above Rj, which is just NM (Rj ;�)(A0i). Let

� �j+1 = MinfNM (Rj;�)(A0i) j �i 2 �jg,

� Ij+1 = fi 62 I1 [ : : :[ Ij j NM (Rj;�)(A0i) = �j+1.

Our task is now to determineRj+1 = Rj[A0i+si j i 2 Ij+1] in a way which guarantees
NM (Rj+1;�j+1) = NM (Rj+1;�), justi�able constructibility for �i with i 2 Ij+1,
and which minimizes the required shifting e�ort. Since we assume 0 < ai, there is
no need for shifting downwards any Ai. The si for i 2 Ij+1 are chosen as follows
(for existence, see [Weydert 98]). First, we set si = s (i � n), where s should verify
for all i 2 Ij+1,

� NM (Rj[A0i + s j i 2 Ij+1];�j+1)(A
0
i) � �j+1.

Secondly, we make all the si uniformly smaller until

� NM (Rj[A0i + si j i 2 Ij+1];�j+1)(A0i) = �j+1 or si = 0.



This is equivalent to minimize the largest si lexicographically. Let h be the �rst j
where �j = ;. Then we have

� Rh = NM (Rh; ;) = NM (Rh;�h) = NM (Rh;�).

That is, Rh is a model of �. It is justi�ably constructible because NM (Rj;�j)(A
0
i)

is stable for shifted A0i with i 2 I1 [ : : :[ Ij . It follows from the construction that
the si are rational and that Rh is �nitely representable, i.e. Rh 2 KP(�). Under
the above conditions, i.e. consistent belief strengthening and conditional ranking
constraints with non-zero bounds, the relative JZ-model Rh will be the intended
revised ��-state R[�].

� R[�] = Rh.

If R = R0, R[�] = JZ[�].

6 JZBR - ANY CONSTRAINTS

The standard JZ-revision procedure does not work for non-consistent revision, i.e.
if R(W �

S
fA0i j i � ng) > 0, or for �-constraints, i.e. if ai = 0. The problem with

the former is that the R(:A0i) are then no longer guaranteed to be stable, which
complicates the construction process. Fortunately, there exists an easy solution.
The idea is to embed W into a larger universe W0 and to introduce

� a propositional algebra B0 over W 0 with W 2 B0,

� a ��-measure R0 : B0 ! [0;1] with R = R0(:jW) and R(:W) = 0.

For every constraint base � and proposition S, let �S be obtained by relativizing
� to S, that is by replacing r(A) + a � r(A0) with r(A ^ S) + a � r(A0 ^ S), or by
relativizing the corresponding conditional ranking constraints to S. We may now
proceed as follows. First, we observe that R0(W0 �

S
fA0i ^W j i � ng) = 0. Con-

sequently, we may apply the standard relativized JZ-procedure to obtain R0[�W ].
A very reasonable choice for R[�] now seems to be R0[�W](:jW). In other words,
we may always reformulate our revision problem so as to avoid the �rst di�culty.
Equivalently, we could apply the algorithm to non-normalized pseudo-��-measures
(R(W) > 0), and only normalize the result by shifting W downwards.

The problem with constraints of the form r(A) � r(A0) is that they may form
loops, making the strati�cation for the inductive process more di�cult to realize.
Extending the JZ-procedure accordingly is much less straightforward. What can go
wrong may be illustrated by the following simple example, with logically indepen-
dent A;A0; B.

� �1 = f1 � r(A); 1 � r(A0); r(A ^A0) � r(B); r(B) � r(A0)g.

If we restrict ourselves to upwards shifting and start from the uniform prior R0, the
only justi�ably constructible model of �1 is R0[A + 1][A0 +1][B +1]. But this
solution is inadequate because it violates a natural principle, which was proposed
in a probabilistic context by Paris [94].

Open-mindedness. NM (R;�)(A) 6=1 ! R[�](A) 6=1.

Because NM (R0;�1) = R0[(A _ A0 _ B) + 1], we should have R0[�1](A0) 6= 1
and R0[�1](B) 6= 1. But this model is not even epistemically constructible over
�1. A natural candidate for R0[�1] would be R0[A+ 1][A0+ 1][B + 1][A^A0 � 1].
Here, A;A0; B get the minimal possible values, as in the normality maximization
model, whereas A^A0 is shifted downwards to avoid makingA0 or B impossible. In



fact, downwards shifting should only be permitted to prevent entangled situations
risking to induce impossibility. It would not be justi�ed in the next example.

� �2 = f1 � r(A); 1 � r(A0); r(A ^A0) � r(B)g.

Here the appropriate model R[�2] seems to be R0[A+ 1][A0 + 1][B + 2]. There is
no need for a costly downwards shift. The distinction between these two examples
is at the heart of the full JZBR-algorithm, which we are now going to present.

JZBR-Algorithm.
The extended strategy proceeds just as the original approach, with two excep-
tions. First of all, it determines a more �ne-grained Ij-hierarchy, to reect the
�-relationships. Secondly, at each level, the standard minimal upwards shifting
process is followed by a corresponding minimal downwards shifting process, for
those �-constraints which have not yet been satis�ed. The technical goal is that
later shiftings should not invalidate constraints satis�ed at earlier stages.

At step j + 1, the de�nition of Ij+1 is di�erent. Let �j+1 be the set of all those
unconsidered constraints with NM (Rj ;�)(A0i) = �j+1. Within �j+1, we want to
single out those conditions which impose the weakest shifting tasks for their A0i,
and which are also the least dependent on the upwards shifting of other A0i. The
idea is to replace or strengthen as many constraints r(Ai) + ai � r(A0i) in �j+1 as
possible by r(Ai) + ai + " � r(A0i) (" > 0), while still having constraints �i with
NM (Rj;� [�0j+1)(A

0
i) = �j+1. Let �0j+1 be any such maximal transformation of

�j+1. Then, �j+1 \�0j+1 is a minimal set of una�ected constraints. Let 	j+1 de-
note the union of all these minimal �j+1\�0j+1, whose elements may be interpreted
as the least dependent or most stable ones. That's why we use 	j+1 to determine
our new top-level constraints.

� Ij+1 = fi 2 I j �i 2 	j+1g.

Although this compact de�nition may look a bit technical, it still seems to repre-
sent the most natural prioritization for �-constraints, in line with the philosophy
of system Z.

As in the original JZ-procedure, the corresponding A0i are now uniformly and min-
imally shifted to level �j+1. However, because the �-constraints may form entan-
gled loops, as in above example, this process may also change the values of some
Ai, thereby undermining the satisfaction of r(Ai) � r(A0i) at this stage. To repair
this distortion, in a second phase, some Ai are shifted downwards, or backwards, to
�j+1. This is realized in the same uniform and minimal way as for the A0i, only the
direction changes. That is, we now consider negative pi becoming larger and trying
to reach �j+1 from above.

Theorem 6.1 (JZBR-Revision)
If R is coherent with �, the JZBR-procedure produces a unique model R of �. We
write R[�] = JZ(R;�).

We may illustrate the procedure with our previous examples. Let us denote the
ith constraint by �i. For both examples, we have �1 = � and �1 = 1, 1 being the
minimal possible value for the A0i.

In the �rst example, there is only a single �01, �1\�
0
1 = 	1 = f�1g, and A is shifted.

Then �2 = f�2; �3; �4g and �2 = 1. Given that all these constraints are entangled,
we get �2 = �02 = 	2 and have to shift A0 and B to level 1. Because this pushes
A^A0 to level 2, the third constraint is violated and we have to repair it by shifting
downwards A ^A0 by one unit. This gives us R0[A+ 1][A0 + 1][B + 1][A^A0 � 1].



In the second example, we have �1\�
0
1 = f�1g or �1\�

0
1 = f�2g, i.e. 	1 = f�1; �2g.

So, A;A0 are shifted to level 1. Then, �2 = 	2 = f�3g and B is shifted to �2 = 2.
The result is R0[A+ 1][A0 + 1][B + 2].

7 COMPARISONS AND CONCLUSIONS

JZBR interprets revision in the narrow sense, implicitlymaking a di�erence between
the evaluation of new information and the realization of the resulting epistemic
constraint by passing to a new epistemic measure. It is a rather singular approach,
which di�ers from more traditional revision formalisms in several ways.

First of all, to compare JZBR with conventional proposition-centered accounts, we
have to adopt a suitable translation policy mapping each incoming proposition to a
��-measure constraint. The simplest solution is to associate with every new propo-
sition A - as long as it is not declared impossible by the initial state R (R(A) =1),
and thereby ignored - the constraint r(:A) + 1 � r(A).

Secondly, it allows us to model multiple or parallel revision. In practice, evidence
usually comes in packages of several items. The ad hoc strategy of imposing a
more or less arbitrary order on the individual pieces of evidence is usually inappro-
priate because most powerful revision techniques, like Spohn's, are highly order-
dependent. So, we need more direct approaches. JZBR does this by exploiting the
top-level structure of constraint bases resulting from the evidential inputs. Whereas
individual constraints are characterized by their semantic content, i.e. the set of
��-measures satisfying them, this is no longer true for arbitrary constraint sets �.
This may be seen as a feature insofar as it allows us to exploit implicit independen-
cies (cf. corresponding discussion for default reasoning [Weydert 98]).

Thirdly, because JZBR not only modi�es the set of beliefs but also the background
preferences - to guide future revision processes or decision-theoretic considerations
- it is di�cult to grasp its behaviour by postulates mainly directed at the belief
level. Concerning Pearl's and Darwiche's [97] postulates C1 - C6 , the situation
is as follows. C1 and C2 do not work for complex belief states, like ��-measures
R. C3 and C4 hold without restrictions because they only make statements about
individual beliefs. C5 and C6 always fail because they conict with the Je�rey
conditionalization procedure.

Fourthly, the closest relative of JZBR may be MCE. In fact, JZBR can be seen
as a semi-qualitative implementation of the information minimization paradigm.
However, as we have already pointed out in the introduction, it should not to be
confounded with ��-MCE, the order-of-magnitude counterpart of MCE. JZBR is
more robust because it is not dependent on the structure of the basic propositional
algebra B. This robustness also explains why MCE's problem with conditional prob-
ability constraints does not a�ect JZBR. Nevertheless, the Shore/Johnson axioms
for discrete MCE [80] are also valid for JZBR, more precisely, for its extension to a
slightly bigger class of constraints. Unfortunately, because the ��-measure frame-
work is much coarser than the probabilistic one, and semantic invariance is only
partly ensured, this axiomatization does not characterize JZBR. Another interest-
ing common property is open-mindedness.

The investigation of JZBR is still at its beginnings. Possibly, a deeper understanding
of the multiple revision perspective may allow us to �nd postulates characterizing
JZBR or variations thereof
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