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Abstract. During the years 2005 and 2006 a robot system has been
developed at Lund University Cognitive Science to run navigation ex-
periments in a dynamic environment. The main aim of the system is
to study anticipation during navigation, model building, color tracking,
navigation algorithms, social robotics and children’s games. This techni-
cal report describes the hardware and software used in the system. The
system consists of two small two-wheeled robots, which are tracked using
color markers using an overhead camera. The robots are controlled by a
computer that handles tracking, navigation, motor control and the ex-
periment control for each robot. Two setups are presented with example
of the implementation of the integrated parts which can be used to run
the system either in simulation or with the real robots. Currently, only
two robots are supported, but in the final phase the system will handle
six robots.

1 Introduction

During the last two years we have been developing a multi-robot system with
the primarily aim of studying anticipation during navigation. We believe that we
have found a suitable domain for studying many of the behaviors that we are in-
terested in including attention, social interaction, context, navigation algorithms
etc. although the main focus is anticipation in navigation.

By using robots, algorithms and models of cognitive processing can be evalu-
ated in a real world environment. Today, robots are used to interact with children
[4], as rescue robots [3], for entertainment [16] and in many other fields. Robots
were previously expensive to build and demanded large amounts of expertise to
get all its components to work together. With today’s low cost and more flexible
electronics, a broader community sees the benefits and both companies and uni-
versities have focused more on robot research. Although many impressive robots
like ASIMO [13], DB [11] and COG [2] require large funding, is is also possible
to build robots using minimal resources.

Which robot and setup one should chose depends much of which type of
experiment or model that one are aiming for. One of the most common robots

⋆ Johansson, B. & Balkenius, C. A Multi-Robot System for Anticipatory Experiments,
LUCS Minor, 11.



are round robots that have differential steering. This type of robots are mainly
used in studying navigation or group behavior such as flocking [12]. Often the
robots have some onboard sensory system like a camera, infrared sensors or
sonar, but to simplify, it is possible to use an overhead camera which simulate
onboard sensors.

In the small sized robot soccer league, which is focused on multi-agent coop-
eration within a dynamic environment, ten out of eleven teams [1] used a single
camera overlooking the whole field. An off-field PC is used to process the images
captured by the overhead camera. In most cased, the off-field PC perform most
of the processing required for coordination and control of the robots.

The communication among the robots on the field and the off-field PC is
wireless and uses ordinary FM transmitter/receiver. To cope with the highly
dynamic environment with robot movement of 1 m/second and ball movement
up to 2 m/s the system must be very effective and handle frame rates of 30
frames/sec[1].

There is two ways to handle the fast movements in robot system. Either one
can optimize the system even more to get an higher frame rate, more powerful
servos, faster communication etc. or one can predict the movements and instead
of having a system that reacts to the current event, the system reacts to a future
event that is has anticipated.

A second type of anticipation concerns anticipation of the environment, for
example the movement of other robots. Sharifi et al. [14] describe a system for
the simulation league of RoboCup where the future state is used to anticipate
which robot will posses the ball next, while Veloso et al. [15] anticipate the
state of the whole team. This means that a seemingly passive agent is actively
anticipating opportunities for collaboration.

With the system described in this report, we hope to contribute in the an-
ticipation research field. The system have been used to compare different type
of navigation and in the future more multi-robot experiments will be conducted
within a dynamic environment.

1.1 General description

The system consists of small two wheeled robots that are able to navigate
through a dynamic environment. The robots are modified versions of the Boe-
Bot robot manufactured by Parallax.

The complexity of the environment can be adjusted using movable bricks.
The robots and obstacles are tracked by color markers attached on the top of
both robots and obstacle. White indicates an obstacle and for the robots two
colors are used to obtain the position and orientation of the robot. The color
tracking is performed by Ikaros 1. All the navigation calculation are also made
by Ikaros which is also responsible for transmitting Bluetooth commands to the
robots. The system currently handles two robots but this will be expanded to 6
robots in the next year.

1 www.ikaros-project.org



Fig. 1: The robot area with robots and obstacles. White indicates an obstacle. The colors
on top of the robots are used for localization and identification.

2 Hardware

This section describes the main hardware used within the system at a level useful
to understand the principles of the system.

2.1 Environment

The size of the area where the robots are allowed to navigate is 2×2 m (Fig. 1).
This area is surrounded by 20 cm high wall that keeps the robots in place if
the system loses control and also gives an excellent protection from confused
cognitive scientist’s walking to close the robots.

The wall is white and the area within the wall is grainy gray. The obstacles
have a similar color as the floor but are marked with white at the top. The white
color on the obstacles and the surrounding wall are interpreted as obstacles or as
something where the robots are not allowed to be. The bricks used are 5×13×21
cm which is the same height as the modified Boe-Bot robots. Each corner of the
robot area has been rounded to reduce the risk of getting trapped in corners.

2.2 Robots

The robots used are two modified Boe-bots2. These robots are mainly used for
education and are easy to learn and use. The height of the Boe-Bots has been
adjusted to fit the height of the obstacles. The reason for this were constraints
in our lab where it was not possible to position the overhead camera straight
above the robot area, instead we had to mount the camera in an oblique angle

2 Parallax Inc., Rocklin, California, www.parallax.com



Fig. 2: 1. Color marking, 2. Bluetooth card, 3. BASIC Stamp, 4. Circuit board 5.
Modified RC servos

and transform the images to what it had looked if it had been mounted at the
desired position.

The dimension of the robots, with the extended height, is 11.5× 13× 21 cm.
They use differential steering which is controlled by a BASIC Stamp [10] and
can move at a velocity from approximately -0.17m/s to + 0.17m/s.

A small prototype board is located on the robots where circuits can be assem-
bled and tested (Fig. 2). The robot operates on between 6-9 V and this is pro-
vided by four AA batteries mounted underneath. The robots are expanded with
an embedded Bluetooth card for communication. This card allows for Bluetooth
communication with keyword security between robots or between a computer
with emulated serial communication over Bluetooth.

During our experiment, we initially had problems with a broken communi-
cation link. When the both motors were running at the same time the power for
the communication was not sufficient and this resulted in lost Bluetooth connec-
tion. This was easily solved with a capacitor that supported the slow batteries
and kept the Boe-Bots online. A 1000 µF capacitor was connected between pin
Vss and pin Vin on the prototype board.

There exist a number of additional sensors for the Boe-Bots (camera, en-
coders, ir sensors, etc.) but in our set-up, no onboard sensors are used. Instead
we use the overhead camera and a computer to track the position and orientation
of the robots as explained above.



Parallax Programming Language (PBASIC) The Boe-Bots uses its own
programming language called PBASIC and in our implementation version PBA-
SIC 2.5 is used. The BASIC Stamp Editor is used to compile and upload the
code to the Boe-Bot’s memory via Universal Serial Bus (USB) or ordinarily serial
communication (RS-232). The language is simple and well suited for educational
purposes. In our case, we have developed protocols that handles the Bluetooth
communication and runs each servo at a desired velocity. Two version of the
protocol exist. Each is based on serial communication and one byte respective
four bytes for controlling the robot. The first protocol had no external robot
behavior debugging help (Diodes or sound onboard the robot) and were used
on in our first experiment ([9]). The second protocol has been expended to four
bytes to enable more information to be sent to the robot.

Bluetooth Protocol Version 1 In this first version of the protocol one speed
backward and three forward speeds could be set. The protocol is simple and
only uses one control byte for communication. When the robot receives a byte
it replies with an identical byte. The computer compares the received byte with
the one sent and if there is an exact match it assumes that the robot has received
the information sent. If there is a mismatch, it retransmits the control byte. If
the following bytes still does not match after 10 retransmission the Bluetooth
link is assumed to be down.

When the robot receives a byte with major errors it stops. Otherwise it
interprets the control message consisting of the eight bits

ABCD EFGH.

in the following way:
Bits ABCD are reserved for future use. There is preliminary work to control

diodes using these bits but this is not included in the official version of the
protocol. Bit EFGH are used to control the servo speed of the robot:

0000 = left motor backwards and right motor backwards.
0001 = left motor backwards and right motor still.
0010 = left motor backwards and right motor forward slowly.

0011 = left motor backwards and right motor forward fast.
0100 = left motor still and right motor backwards.

0101 = left motor still and right motor still.
0110 = left motor still and right motor forward slowly.

0111 = left motor still and right motor forward fast.
1000 = left motor forward slowly and right motor backwards.
1001 = left motor forward slowly and right motor forward slowly.

1010 = left motor forward slowly and right motor forward fast.
1011 = left motor forward fast and right motor backwards.

1110 = left motor forward fast and right motor forward slowly.
1111 = left motor forward fast and right motor forward fast.

The code in Ikaros used for communication has the following structure:

if (input_speed[0] == s0)
*MyMessage |= BACKWARD;

else if (input_speed[0] == s1)
*MyMessage |= STILL;

else if (input_speed[0] == s2)



*MyMessage |= FORWARD1;

else if (input_speed[0] == s3)
*MyMessage |= FORWARD2;

else if (input_speed[0] == s4)
*MyMessage |= FORWARD3;

*MyMessage <<= 4;

// Building the second part of the message
if (input_speed[1] == s0)

*MyMessage |= BACKWARD;
else if (input_speed[1] == s1)

*MyMessage |= STILL;

else if (input_speed[1] == s2)
*MyMessage |= FORWARD1;

else if (input_speed[1] == s3)
*MyMessage |= FORWARD2;

else if (input_speed[1] == s4)
*MyMessage |= FORWARD3;

The PBASIC code in the BASIC Stamp stamp interprets the commands as
follows:

SERIN 0,$54,20,MOTORCONTROL, [STR bData \1]

Mask = %11111111
SM = bData&Mask
’Turn on spot special!

IF SM = %00000010 THEN case67 ’(S0 S2)
IF SM = %00100000 THEN case68 ’(S2 S0)

’Backwards
IF SM = %00000000 THEN case0 ’(S0 S0)
IF SM = %00010000 THEN case1 ’(S1 S0)

IF SM = %00000001 THEN case2 ’(S0 S1)
’Still\\

IF SM = %00010001 THEN case3 ’(S1 S1)

Bluetooth Protocol Version 2 Instead of one byte as in the fist protocol four
bytes were used in the second version. With four bytes, more information can be
sent to the robots which results in more speed levels, sound and LED control.
To produce these extra features, one piezoelectric speaker and 5 LEDs were
attached to the onboard prototype board. To use all the features of the protocol
LEDs and the piezoelectric speaker must be connected to the prototype board
and the BASIC Stamp pins in the following way:

PIN DEVICE

P0 (Bluetooth) RX
P1 (Bluetooth) TX
P2 (Bluetooth) RX Flow (RTS)

P3 (Bluetooth) TX Flow (CTS)
P4 RESERVED

P5 (Bluetooth) Connection Status
P6 (Bluetooth) Mode Control

P7 Control LED 1
P8 Control LED 2
P9 LED Right

P10 SPEAKER
P11 RESERVED

P12 RIGHT SERVO
P13 LEFT SERVO
P14 LED Front

P15 LED Left

Tests during development indicated that the time for sending one byte was
almost the same as for sending 4 byte and that is one of the reason for the ex-



tension of the protocol. The other reason was the insufficient number of velocity
levels in the first protocol.

The time needed to transmit four bytes and to receive acknowledgment from
the Bot-Bots takes approximately 60 ms. When the robots are traveling at a
maximum speed and the system is forced to do four retransmission, the robot
can travel as much as 20 mm to 50 mm without any control from the computer.

The transmission time until it receives the acknowledgment is measured by
Ikaros. the robot send the acknowledgement back immediately after it has re-
ceived the command. To measure the time to command execution on the robot
is harder and instead the above measurement is used to get an indication of the
timing. This measure is calculated with the maximum speed which is exagger-
ated since this speed in seldom used during navigation. The measurements are
made without the basic editor debugging window. When debugging, delays are
at least twice as long. The delays are also increased when using sound.

The four byte long control message consists of the following bits:

LLLL LLLL RRRR RRRR SSSD DDDD MMXX XXXX bits.

The servos are controlled with one byte each. The first byte codes are for the
left server and the second are for the right. One byte gives 28 = 256 different
levels of velocity for each servo. This will give approximately 128 levels in each
direction which is an improvement since the previous protocol used only three
levels forward and one backwards.

Each robot receives an integer between 0 and 255 in the first byte of the
message then adds 600 to this value to set the pulse length that controls the
motor speed. The reason for this is to minimize the amount of information sent
over Bluetooth. For example, to send a zero in the first byte will result in the
pulse length 600 for the right servo and 200 will result in 800.

With this protocol it is also possible to play tones. The first 3 bits in the
third byte determent which tone, the robot should play.

Sound

000 = 264 Hz - C, DO
001 = 297 Hz - D, re

010 = 330 Hz - E, me
011 = 352 Hz - F, fa
100 = 396 Hz - G, so

101 = 440 Hz - A, la
110 = 495 Hz - B, ti

111 = 528 Hz - C, DO

The rest of the bits in the third bytes control the LED’s. 5 LED’s can be
used and controlled separately. The five bits for the LED’s are used as follows:

LED control byte: 12345

1 = Control LED 2

2 = Control LED 1
3 = LED right

4 = LED front
5 = LED left



The first two bits in the fourth byte are message identifier. The message is
used to identify if there has been a retransmission of a message due to timeout or
transmission errors. Because of the robustness of the Bluetooth communication,
with the capacitor, the maximum number of retransmissions is reduced to four.
The last six bits are reserved for future use.

The code in Ikaros used for communication has the following structure:

// Construct the message
if(Speed!=NULL)

{
SendCommand[0]=(byte)(Speed[0]*SpeedIntervall);

SendCommand[1]=(byte)(Speed[1]*SpeedIntervall);
}
else

{
//No Speed input. Setting speed to 0

*SendCommand|=(byte)(0.5*SpeedIntervall);
*SendCommand<<=8;

*SendCommand|=(byte)(0.5*SpeedIntervall);
Notify(6,"(Boebot.cc)No speed input setting speed to half speed Interval");

}

if(Sound!=NULL)
//Sound3bits

SendCommand[2]=(byte)(Sound[0]);
else

SendCommand[2]=0;

if(D!=NULL)
{

for(inti=0;i<NrOfDiods;i++)
{

SendCommand[2]=SendCommand[2]<<1;
SendCommand[2]|=(byte)D[i];

}

}
else

SendCommand[2]|=(byte)0;

// MessSeq

SendCommand[3]|=(byte)resendcounter;
SendCommand[3]=SendCommand[3]<<6;

// End of message construction

//***************************

The receiving code in PBASIC:

’ ****************** RECEIVE ***********************
Receive:

SERIN 0,$54,100,EXECUTE, [STR message\MessageLength]

GOTO SEND

’ ****************** RECEIVE END ******************

’ ****************** SEND ************************

SEND:
SEROUT 1,$54,[STR message\MessageLength]

GOTO EXECUTE

’ ****************** SEND END ********************

’ ****************** EXECUTE ********************
EXECUTE:



’ First part of message

M.BIT7(0) = message.BIT7(0)

M.BIT6(0) = message.BIT6(0)
M.BIT5(0) = message.BIT5(0)
M.BIT4(0) = message.BIT4(0)

M.BIT3(0) = message.BIT3(0)
M.BIT2(0) = message.BIT2(0)

M.BIT1(0) = message.BIT1(0)
M.BIT0(0) = message.BIT0(0)

’ Second part of message

M.BIT7(8) = message.BIT7(8)
M.BIT6(8) = message.BIT6(8)

M.BIT5(8) = message.BIT5(8)
M.BIT4(8) = message.BIT4(8)
M.BIT3(8) = message.BIT3(8)

M.BIT2(8) = message.BIT2(8)
M.BIT1(8) = message.BIT1(8)

M.BIT0(8) = message.BIT0(8)

’ Third part of message

SFQ.BIT2 = message.BIT7(16)

SFQ.BIT1 = message.BIT6(16)
SFQ.BIT0 = message.BIT5(16)

D(0) = message.BIT4(16)
D(1) = message.BIT3(16)
D(2) = message.BIT2(16)

D(3) = message.BIT1(16)
D(4) = message.BIT0(16)

’ Fourth part of message

MSEQ.BIT1 = message.BIT7(24)
MSEQ.BIT0 = message.BIT6(24)

’ REST RESERVED...

2.3 Camera

The camera used is an Axis 2130 PTZ (Fig. 3). This camera can tilt, pan and
zoom and has a resolution up to 704× 480 pixels. Images taken by the camera
can be received over HTTP using web server running under Linux. The server
sends the requested images but can also be set to stream sequence of images to
get a higher frame rate. Parameter for JPEG compression and resolution can
be specified in the HTTP GET request. In this setup a low compression and a
big resolution is used to obtain the best performance when tracking the robots.
The tilt, pan and zoom parameters are only set and stored initially and are not
changed during simulation or robot experiment.

3 Software

The software developed for the system is written in C/C++ and Parallax PBA-
SIC. PBASIC is used for the robots and the Ikaros framework is used for the rest
of the system [?]. Ikaros is set to run in cycles of 250 ms, and with time steps as



Fig. 3: An Axis 2130 PTZ is used in the robot setup. The camera has a built in web
server which sends requested images in different resolution and compression

long as this, the models must predict very well to perform smooth navigation.
Not only the planning part of the navigation depends on precise models. Also
the reactive part uses these models to avoid something that is too close to the
robot.

3.1 Ikaros Modules

During the development phase a number of modules have been created. Some of
them are very essential for the system and others are used in more specific cases.
To be able to sort out the most used modules, two different setups have been
designed. Each handle a scenario with two robots, either simulated or real, in
which they can navigate autonomously or manually. Around 18 Ikaros modules
are used to run a full experiment and this system uses the Windows version of
Ikaros. Most of the modules developed could be used on any platform but there
are some, like the serial communication, which is Windows specific.

Minimal setup In this setup a minimal number of modules is used and the
main purpose of this setup is for testing and debugging (Fig. 4). Both robots
work autonomously, but the navigation can be overridden manually for specific
debugging or to study behavior of human interaction. The tracker is simulated
in this system using an input raw image as obstacle and Gridworld modules for
calculating the position of the robots. The Gridworld module sends the position
of the robots to the world models for each robot. Those simulations then forward
the position and orientation to the navigation module, which uses the goal input,
if there is any, to steer the robots toward the goal. The navigation module can
also gather data for statistics and forward it to Ikaros.

Robot setup This second setup is the basic one for robot experiment. It in-
cludes all modules used in a real robot experiment. The tracking component uses
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Fig. 4: Modules in the minimal setup. All parts are simulated. The setup includes nav-
igation, tracker system, world models and user interface. Dotted parts are optional

the network camera module, arbitrary transform modules and the bottracker
module (Fig. 5). These send the position and orientation and their certainty to
the world models used by the navigation module. The navigation module then
sends motor command to the robots using Bluetooth. Also in this case, it is pos-
sible to override the system behavior by adding a user interface and manually
steer the robots. This is very usefully to test specific behaviors of the robot - for
example that the reactive avoidance system really works in a satifactional way.
It could also be used for comparing the real robot position and orientation with
the simulated to measure the performance of the models used to simulate the
world. Ideally the position in the simulated and the real world will be identically.

NetworkCamera This module requests an image or stream of images from
the Axis 2130 camera. It downloads the images from the camera and transforms
it to three raw RGB matrices, which can be interpreted by the Ikaros system.
Example from the Ikaros control file:

<module

class = "NetworkCamera"
name = "CAMERA"
size_x = "704"

size_y = "480"
host_ip = "192.168.0.2"

fps = "10"
compression = "30"

/>
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Fig. 5: Modules in the robot setup. This setup was used for the robot experiments.
The setup includes navigation, tracker system, world models, user interface and robot
modules. Dotted parts are optional

Arbitrary Transform This module performs an arbitrary transform of an
image. This transformation is require to get a top view even with a camera
mounted at an unknown angle above the robot area. A color image in Ikaros is
divided in three matrices for each of the RGB values, this requires that three
arbitrary transform modules must be used. Example from the Ikaros control file:

<module

class = "ArbitraryTransform"
name = "Transform1"
outputsize_x = "704"

outputsize_y = "480"
x0 = "73"

y0 = "8"
x1 = "642"
y1 = "1"

x2 = "110"
y2 = "470"

x3 = "607"
y3 = "474"

exp_x = "1"
exp_y = "0.88"

/>

Boe-Bots This is the Bluetooth communication module. This module trans-
forms the wanted velocity of the motors and send them over emulated serial
communication using Bluetooth. It also has functions for resending a message if



A B

Fig. 6: One of the robot color markers. The average position is calculated (A and B).
The vector between A and B is the orientation and the average between the means are
the position of the robot

there is a timeout or if it receives an unexpected message from the robots. The
only parameter that need to be defined is which port to use to the communica-
tion:

<module
class = "BoeBot"
name = "BoeBot4"

port = " \\.\COM15"
/>

BotTracker This module tracks the robots and obstacle in the image. The
modules receive an RGB color image using three matrices. Using these matrices
the orientation and position of the robots and the position of the obstacles are
found. The robots are located using two color markers (Fig. 6), which have been
tested to perform well in the light conditions in our lab. Example from the Ikaros
control file:

<module
class = "BotTracker"

name = "BotTracker"’

color1 = "2.2"

color2 = "-1.45"

threshold1 = "0.95"
threshold2 = "0.95"

saturation1 = "0.05"
saturation2 = "0.03"

Bcolor2 = "1.55"

Bcolor1 = "-0.25"
Bthreshold2 = "0.95"
Bthreshold1 = "0.95"

Bsaturation2 = "0.05"
Bsaturation1 = "0.03"

search_radius = "120"

cluster_size = "60"
certainty_constant = "0.001"
statistics = "no"



grid_x = "32"

grid_y = "32"
>

<grid>
</grid>

</module>

ContinousGridWorld This module is a simulation of the real world. The
model calculates the position of a robot in a grid, depending on wheel size,
world size and speed. There exist two versions of this module. The latter one
can also update the simulation with a new position. For example, if the tracking
system has found the robot position and orientation with much certainty it can
update the Gridworld with this position. The module is used by the navigation
module to retrieve position and orientation, but it is also used to simulate the
tracking system in the minimal setup.

<module>
class = "ContinuousGridWorld2"
name = "GW1"

start_x = "0.6m"
start_y = "0.3m"

start_orientation_x = "1"
start_orientation_y = "0"

smoothness = "1"
timebase = "0.1s"
world_size = "2.015 m"

wheel_radius = "0.0335m"
wheel_distance = "0.055m"

position_certainty_threshold = "0"
orientation_certainty_threshold = "0"
position_change_threshold = "0"

orientation_change_threshold = "0"
>

<grid>
</grid>

</module>

Goal The goal module is used in the experiment to set where the start and goal
are for each robot. The start and goal points can be switched during simulation
depending on the input to the module.

<module>
class = "Goal"

name = "Goal"
outputsize = "2"
<data1>

8 6
</data1>

<data2>
24 26

</data2>

</module>

Keyboard Arrows This module is used for the optional human interface part
and fetches which arrow is pressed on the keyboard and sends its virtual keyboard
code as output.



<module

class = "KeyboardArrows"
name = "KeyboardArrows"

/>

Motor Control The Motor Control module is also a part of the optional human
interface. It receives a keyboard code from the Keyboard Arrows module and
sends a hand coded speed forward depending on which code that was received,
e.g. which arrows were pushed in the Keyboard Arrow module. This module to-
gether with the Keyboard Arrows module can be used to steer a robot manually
either in simulation or reality.

<module

class = "MotorControl"
name = "MotorControl"

/>

Navigation The most complex part of the system is the navigation module,
which is responsible for all the navigation done by the robots. The robots nav-
igate using random, reactive, planning or anticipation approaches. The module
handles different navigation approaches:

Random Control This system simply transmits random motor commands to the
robot until it has reached the goal. The robot is instructed to turn toward a
random orientation and then travel in this direction until an obstacle activates
an obstacle avoidance system, in which case a new random direction is set.

Reactive Approach With the reactive approach, the robot always tries to go
directly toward the goal. The desired path is calculated as the straight line
between the current location of the robot and the goal location. This strategy
will obviously have problems when there are obstacles in the way and to handle
this situation a reactive avoidance system was added.

Planning System The planning system is responsible for path finding within the
environment. To accomplish this, an A* based navigation algorithm is used [7].
This is a grid based navigation algorithm with full knowledge of the environment.
It finds the shortest path to the goal by testing it in the grid-map. If it is unable
to use the shortest path, the second shortest path is tested and so on, until a path
has been found. Each robot uses the algorithm to find the best path through
the robot area. The grid-map is divided into 32×32 elements with a status of
either occupied or free. The planning system takes no account of where the other
robots are located and only uses its own position, the desired position and the
grid-map to find the path (Fig. 7).

Anticipation System The anticipation system is similar to the planning system,
but also includes the movements of the other robots. If the other robots were
stationary, the A* algorithm could register the other robots as obstacles. When
the other robots are moving it becomes necessary to anticipate their position at
each time-step in the future. To solve this, each robot has a model of the other
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Fig. 7: Planning and Anticipation. In the planning phase, the robot do not take any
account of the other robots when planning its path to the goal, only the obstacles are
used. The robot area is divided in a grid and the A* navigation algorithm is used to
find a path to the goal. The anticipation phase works in the same way as the planning
but also include the robots in the path finding. In the figure the system find a robot
collision during its path to the goal. The one robot with the highest rank is prioried and
the other robot have to chose an other way to avoid the collision.

robot. This model is built using each robot’s own planning system. For example,
robot A assumes that robot B would use the path that robot A would have used
if it were located at the position of robot B and heading for the goal of robot B.
Before robot A tries to find its own path, it updates its model of the other robot
and uses this to find the path for robot B by stepping forward in the planning
and checking if there is any collisions. If there is a collision, the robot chooses
an alternative path and tests if this is a valid (Fig. 7). This is repeated until
a valid path is found. It should be stressed that the individual paths are not
shared between the robots. Only the start and goal position is known by the
other robot. With noise in the system this could lead to inaccurate models of
the other robot and this could in turn lead to more activation of the reactive
avoidance system. A similarly approach was presented by Guo [6].

An obvious problem arises with this approach. If both robots use the same
method to find a valid path, it is possible for both robots to select the alternative
path which will still result in a collision. A way to avoid this problem is to assign
a rank [5] to each robot where the robot with the highest rank always takes the
shortest path. For example, let the robot with the longest distance to the goal
have the higher rank and let the other robot replan its path around the more



Fig. 8: The robot with the reactive field around it. The reactive field divides the sur-
roundings into eight regions and different avoidance behaviors are activated depending
on the location of the obstacle.

highly ranked robot. If the present robot has the lowest rank, we let A* see the
other robots as a obstacle but only during that time step. This means that at
just that time step there is an object at that position at some time steps later
the obstacle has moved and the grid that was occupied in the first time step is
free again. In the experiments, we tested three different ways to select the rank
of each robot, (1) a fixed rank, (2) the robot closest to its goal would have the
highest rank, and (3) the robot with the larger distance to its goal would receive
the highest rank. Note that according to the last two strategies, the ranks of the
robots may change when the robots move.

Reactive Avoidance A reactive avoidance system is placed on top of the other
navigation systems and is activated if there is an obstacle too close to the robot.
We divided the reactive area around the robot into 8 regions (Fig. 8). Three in
front of the robot, one on each side of the robot and three behind the robot. The
robot performs different types of avoidance behaviors depending on in which
regions the obstacle was found. If an object is straight ahead, the robot turns
on the spot until the obstacle has disappeared from the region and if an object
is found to the left of the robot, it steers to the right to obtain a free path.
Although the reactive avoidance system mainly helps the robot to reach its goal,
it sometimes counteracts the control of the navigation system. For example, when
the navigation system instructs the robot to turn right, the reactive avoidance
system may detect an obstacle in that area and tell the robot to turn left instead.

All the information used by the navigation is received from the models of
the real world and not the real world itself. This makes the system much more
dynamic since it allows the tracking system to update the models at a slow speed
although the motor loop can run fast to produce smooth trajectories.

The module can also collect data during an experiment. In this case, more
outputs are connected that are used for Ikaros to store the data. A complete
descriptions of all the parameters of the module can be found in the code docu-
mentation.

The module currently only handles two robots at this phase of the develop-
ment. Example from the Ikaros control file:



<module

class = "Navigation"
name = "Navigation"

type = "random"
anticipation_type = "rank"
number_of_switch = "20"

size_x = "32"
size_y = "32"

number_of_robots = "2"
CollectData = "false"
world_complexity = "2"

reactive_view = "300"
reactive_size_x = "16"

reactive_size_y = "16"
>

<robot1
cost = "1"
cost_diagonal = "1.41"

start_position_x = "10"
start_position_y = "10"

goal_position_x = "10"
goal_position_y = "10"

rank = "1"
/>
<robot2

cost = "1"
cost_diagonal = "1.41"

start_position_x = "10"
start_position_y = "10"
goal_position_x = "21"

goal_position_y = "15"
rank = "0"

/>
</module>

4 Conclusion

In this report we have described a multi-robot system developed to study an-
ticipation in navigation, attention, social interaction. The system consist of two
small two wheeled robots that navigate in a dynamic environment. Color mark-
ers are used to detect obstacles and robots within the area. The Beo-Bot robots
have wireless communication with the Ikaros framework which runs on an or-
dinary computer. Ikaros performs all the processing needed for the robots, like
tracking, navigation, and steering.

The system has been further described in a paper at the Swedish artificial
intelligence meeting [8], the international conference of child development [?]
and the workshop on anticipatory behavior in adaptive learning systems [9].

In [9], we compared different navigation methods with the robot system. In
that paper, random, reactive, planning and anticipatory methods were compared
in environments of different complexity. Random approach was always slower
than the other approaches and the reactive approach was faster then the other
in an environment with no obstacles. Otherwise, the planning and anticipation
approaches had the best performance in the experiment. Similarl experiment are
planned that will investigate the robustness of noise in a system.

The final goal for our work with the multi-robot system is to get 6 robots
to play children’s games with each other. Children’s games are constrained to a



small number of rules that determent the outcome of the game. We hope that
children’s games will be an excellent domain to study many of the research fields
that we are currently interested in as well as being suited for demonstrations.
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