Finding Colored Objects in a Scene

Christian Balkenius Birger Johansson

Lund University Cognitive Science

Kungshuset, Lundagard
222 22 LUND, Sweden

Abstract

This report describes a fast method for finding regions wipadicular color
in a visual scene. The method is general enough to be used sitaations were
a number of objects with known color need to be found in an Endlfe demon-
strate how the algorithm can be used to find and track robdtsosiored markers,
symbols with a particular color as well as for simple colaséd face detection.

1 Introduction

In many cases, the color of an object s its most charadtepisiperty and this suggests
that it should be possible to find an object in a visual scersedban its color. In
principle, this could be done by searching for all pixels mimage with a particular
range of RGB values, but in practice, this does not work veslf.\Where are a number
of reasons for this, but the most important is that the RGBasgntation of color mixes
intensity and color in all the three channels (Balkeniuslgt2903). For example,
if the illumination increases, the values in all three chelamwill increase although
perceptually, the color would not have changed. To allovstarh changes, the range of
RGB values have to be very large and this would include calatare not necessarily
of the target color.

Another problem is that the color of the illumination may obe over the day,
which will have different effects on the different RGB chaim This is in general
a very hard problem to solve and requires color constanay, fee example Ebner,
2004). However, it is possible to get by with simpler helicgstn many cases.

Here, we describe a fast algorithm that can compensatedsetyariations and find
pixels in an image with a particular color. There are a nunagrroblems that need
to be solved. First, it is useful to map the colors from RGBcgptd a more useful
representation. Here we will map the colors onto the rg-ctaticity plane where the
each color is coded as a hue and saturation, but the intaagifgcarded. Second, it
is often necessary to compensate for variations in illutidna This can be done by
approximating the location of the white point in the coloasp and relating all colors
to this point. Here, we assume that the average color of thesis gray and use this
as a reference (Gershon et al., 1987). Third, we need to fmgittels in the image
that have the desired color. This is done by first testingefablor of each pixel lays
in the target color region. Fourth, the different objecttwihe target color are found

*Balkenius, C. & Johansson, M. (200Rinding Colored Objects in a SceneUCS Minor, 12.

color
circle

FIGURE 1: The transformation from RGB-space to the rg-chromaticianp. A color is defined
as a segment of a circle centered at the white point with thstleaturated part removed. The
color region is specified with the four parametersw, and smin and smax-

using a clustering method which groups together pixels tithtarget color that lies
close to each other in the image. Finally, the clusters casolted according to size or
matched to the positions of the clusters in the previous @agrack objects that are
moving.

2 Color Transformations

The first step in the color tracking algorithm is a transfotiotaof the pixel coordinates
in the RGB image to the rg-chromaticity plane (Fig. 1). Wel wi#isume that the RGB
values are in the rand@..1]. This transformation is obtained by dividing the R and G
components of the pixel coordinates with the sum of the thod@r channels.

o R
- R+G+B
B G
I"R+G+B

The two dimensional rg-plane contains the colors of theioalgRGB space, but the
intensity of each pixel has been discarded. The intensitge€tolor is calculated as

I=R+G+B.

Note that this is not the best way to estimate perceived sitierince the three colors
contribute differently to the perception of intensity, tis approximation is sufficient
for our present purposes.

The above transformation maps red, green and blue onto tke torners of a
triangle. Gray and white are both mapped to the same poifit/at 1/3). This is
called thewhite pointof the color triangle. Note that the transformation of blatkhe
RGB-space, i. (0,0, 0), is not defined (but may be mapped onto the white point).

It is possible to construct a color circle around the whiténpavhere the angle
describes the hue and the distance from the center depenttle aturation of the
color. Because of the shape of the color space, the samadahstam the white point
does not correspond to the same saturation in each direction

Calculation of white point The white point of the image can be estimated from the
image data if we assume that the average color of the imagays he averagé,

G, and B of each of the three color channels are calculated and pesjemto the
rg-plane:

=
Il
Q| =3

no]]
+
4
(ws]]

QI

Il
jau]l
4
QY N
+
[we]

the white point is set to

w=(7,g).
Assuming that the illumination is equal in the red, green bloé channels, the white
point can be directly set tl /3,1/3).

If the illumination varies over the image it can be advantageto use different
white points for different pars of the image, but in this cétsis important that the
average color of the different areas is the same. Otheniligesame color in the
different regions will not be mapped to the same point.

Color coordinates Each colorin the rg-plane is mapped to two values. The thkeang

around the white point
r—r
p = arctan (_)
9—9

s=/(r =2+ (9-9)?
that is, the distance from the white point (See Fig. 1). Tagults in the color coordi-
nate

and the saturation

p= <(,0,5>-

Fig. 1 shows the result of mapping all the pixels of image®dhé (p, s) space.
The differently colored object are clearly seen as dotsiwitifferent regions of the
color space.

3 Classifying Colors

To find a region of the image with a particular color, we firstdé¢o classify the pixels.
We define a target color region using four values, the apglend the minimum and
maximum saturation,,;, ands,,.., and finally the width of the regiom. We want to

FIGURE 2: The algorithm applied to three different scenes. Top row r8bots with colored
markers. Middle row: A simple scene with dots of differedbis Bottom row: An image of a
face. Left. the inputimage. Middle. The rg-colorspace Withlocations of the color coordinates
of the pixels in the image and the target color region highiegl. Right. The detected pixels in
the scene.

find all pixels, the color or which lies within this region. Wan do this directly from
the (¢, s) representation by testing
Smin < 8 < Smax;

and

p—w<p<ptuw.

However, this method is very time consuming since it invelealculating a square
root and arctan for each pixel in the image. There is also sidiv, that should be
avoided if possible. Fortunately, this test can be made rfagtlkr by getting rid of all
these operations.

A Faster Inclusion Test To make the color test faster, we map the problem onto a
vector representation. Assuming that the color angle ferdgion is given in degrees,
the target color vectar = (c,, ¢,4) for aregion is given by

. 2T
cr=sin| — |,
360

Cys — COS 27T_(p
9 360)

The width of the region is represented by the valuerhich is calculated as,

2mw
2 _ 2
w* = cos <—360) .

The above calculations only need to be done once for eacéttagion. To check
whether the color of a pixel lays within the target region,fitst calculate the square
of the length of the color vectdr, g) as

L2 =72 4 g2,

and the scalar product of the color and the target color

m = ¢T + ¢q49,

The following conditions are then tested

81211in < L2 < S?nax’ (1)
m > 0. 2

and
m? > w? L% 3)

The color of the pixel lays within the target region if botkege conditions are met.
Note that this formulation of the condition completely al®any computationally slow
operations such as divisions, square roots or trigonomttrictions, except for the
three initial calculations ot,, ¢, andw?, but these are only made once and not for
every single pixel.

4 Color Clustering

The second step in finding potential targets is to clustepthiets that fulfills the re-
quirement above. A cluster; is defined by the set of coordinates of all its included
pixels. The center of the cluster= (c,, c,) is calculated as the average position of
all pixels that have already been included in the clustefinibthe different clusters in
the image, we iterate over all pixels that fulfills the reguiients (1) and (3) above.

Here, we use a simple algorithm that works well when the nurobgargets are
relatively sparse. For each pix€ls, y) with the target color we test whether there is a
cluster center within the distandefrom it. In that case, the new pixel is added to the
cluster. Otherwise, a new cluster is created with this pasdts center. This procedure
continues until all pixels have been assigned to a cluster.

This method works well if the distanekis set to match the approximate size of the
targets. It would be possible to use much more advancececingtalgorithms (Duda
et al., 2000), but in many cases this simple method is sufficie

5 Post-Processing

There are a number of methods that can be used after clusteriproduce a more
stable output. These techniques can be used together busmliginder each other in
some cases.

Noise Reduction After clustering, all clusters with less thas pixels can be dis-
carded as noise. This is useful in many cases but may havetented consequence
that a cluster that is temporarily smaller may disappear.

Size Selection If the number of targets are known, for example if we are firagla
fixed number of robots, it is often a good idea to selecktlegest clusters and discard
any smaller ones.

Tracking If the target objects are known to move continuously in thensg it is
useful to assign the same index to the cluster belongingetedime target at each time
step. This can be accomplished either by finding the closester from the previous
time step after clustering, or by using the centers of the&ipus clustering as the
starting point for the clusters in the current time step.

We use the former method as the latter is very sensitive tsendiVhen the new
set of clusters have been found, they are matched to theustund on the previous
time step. This is controlled by a parameter that decidesfaow cluster can move
and still be matched. Clusters that are not assign a newidocate marked as unused
and may be reassigned at a later stage.

Although this method is far from perfect and much more adedricacking meth-
ods exist, it works well in situations where the target obge not moving very fastin
the image and targets are well separated. In more compdicates, it is necessary to
use a more able tracking system after this post-processing.

6 Implementation Details

The algorithm described above has been implemented as & s®tdules in Ikaros

(Balkenius et al., 2007). The modubmlorTransforntransforms the input image from
RGB-space to rgl-space, that is, the rg-chromaticity plagether with an intensity
channel. The result is sent to ti@olorClassifiermodule which performs the color
classification and sends its result to the modipatialClusteringvhich finds the clus-

ters in the image. This sets up a processing pipeline fronmtlage to the table with

the found clusters. The parameters of the modules can be fatavs:

<nmodul e
class = "Col or Transf or ni
name = "Col or Tr ansf or mi'
transform= "RGB->rgl"

/>

<nmodul e
class = "Colord assifier"
nane = "Col orCl assifier”
col or = "145 degrees”
wi dth = "30 degrees”
saturation_mn = "0.05"
saturation_max = "0. 35"
compensation = "yes"
statistics = "yes"

/>

<nmodul e
class = "Spatial dustering"
nane = "Spatial Cl ustering"
cluster _radius = "30"
m n_cluster_size = "50"
tracki ng_di stance = "0. 1"
no_of clusters = "6"

/>

Most of the parameters are self explanatory. The compemspéirameter decides
whether the module should try to compensate for the colohefiltumination using
the gray-world assumption described above.

The output from the module is a table of coordinates for thenébclusters. For
debugging purposes, there are also two additional outplite first one shows the
locations of the input pixels in the color space. The secantgut shows the spatial
location of those pixels that pass the color test (See Figli#®se outputs can be turned
on or off using the parametstatistics Full documentation of the module together with
the source code can be found at the Ikaros web site (wwwsk@roject.org)

The performance of the algorithm is reasonably good. Wedemt implementation
with very little optimization except of the ones describédee. On a 2.66 GHz Dual-
Core Xeon computer, an image of size #0480 pixels with the scene shown in Fig. 2
is processed in on the average 7.3 ms. This is fast enougkdbtime tracking in a
DV-stream.

Acknowledgements

This work was supported by the EU project MindRaces, FP@311

References

Balkenius, C., Johansson, A. J., and Balkenius, A. (200®)JorGonstancy in visual
scene perceptior.und University Cognitive Studigg8.

Balkenius, C., Morén, J., and Johansson, B. (2007). Sykdeeh cognitive modeling
with ikaros. Lund University Cognitive Studig$33.

Duda, R. O., Hart, P. E., and Stork, D. G. (200Battern ClassificationWiley Inter-
science.

Ebner, M. (2004). A parallel algorithm for color constandpurnal of Parallel and
Distributed Computing64(1):79-88.

Gershon, R., Jepson, A. D., and Tsotsos, J. K. (1987). Fra@,B} to surface re-
flectance: Computing color constant descriptors in imagesMcDermott, J. P.,
editor, Proc. of the 10th Int. Joint Conf. on Atrtificial Intelligenceolume 2, pages
755-758.

