
Finding Colored Objects in a Scene∗

Christian Balkenius Birger Johansson

Lund University Cognitive Science
Kungshuset, Lundagård
222 22 LUND, Sweden

Abstract

This report describes a fast method for finding regions with aparticular color
in a visual scene. The method is general enough to be used in any situations were
a number of objects with known color need to be found in an image. We demon-
strate how the algorithm can be used to find and track robots with colored markers,
symbols with a particular color as well as for simple color-based face detection.

1 Introduction

In many cases, the color of an object is its most characteristic property and this suggests
that it should be possible to find an object in a visual scene based on its color. In
principle, this could be done by searching for all pixels in an image with a particular
range of RGB values, but in practice, this does not work very well. There are a number
of reasons for this, but the most important is that the RGB representation of color mixes
intensity and color in all the three channels (Balkenius et al., 2003). For example,
if the illumination increases, the values in all three channels will increase although
perceptually, the color would not have changed. To allow forsuch changes, the range of
RGB values have to be very large and this would include colorsthat are not necessarily
of the target color.

Another problem is that the color of the illumination may change over the day,
which will have different effects on the different RGB channels. This is in general
a very hard problem to solve and requires color constancy (see, for example Ebner,
2004). However, it is possible to get by with simpler heuristics in many cases.

Here, we describe a fast algorithm that can compensate for these variations and find
pixels in an image with a particular color. There are a numberof problems that need
to be solved. First, it is useful to map the colors from RGB space to a more useful
representation. Here we will map the colors onto the rg-chromaticity plane where the
each color is coded as a hue and saturation, but the intensityis discarded. Second, it
is often necessary to compensate for variations in illumination. This can be done by
approximating the location of the white point in the color space and relating all colors
to this point. Here, we assume that the average color of the scene is gray and use this
as a reference (Gershon et al., 1987). Third, we need to find the pixels in the image
that have the desired color. This is done by first testing if the color of each pixel lays
in the target color region. Fourth, the different objects with the target color are found

∗Balkenius, C. & Johansson, M. (2007).Finding Colored Objects in a Scene. LUCS Minor, 12.



g

r

white
point

R

G

B

g

r

ϕ

<ϕ, s>

ω

wg

color

circle

wr

<ϕ, ω, smin, smax>

smax

smin

FIGURE 1: The transformation from RGB-space to the rg-chromaticity plane. A color is defined
as a segment of a circle centered at the white point with the least saturated part removed. The
color region is specified with the four parametersϕ, ω, andsmin andsmax.

using a clustering method which groups together pixels withthe target color that lies
close to each other in the image. Finally, the clusters can besorted according to size or
matched to the positions of the clusters in the previous image to track objects that are
moving.

2 Color Transformations

The first step in the color tracking algorithm is a transformation of the pixel coordinates
in the RGB image to the rg-chromaticity plane (Fig. 1). We will assume that the RGB
values are in the range[0..1]. This transformation is obtained by dividing the R and G
components of the pixel coordinates with the sum of the threecolor channels.

r =
R

R + G + B

g =
G

R + G + B

The two dimensional rg-plane contains the colors of the original RGB space, but the
intensity of each pixel has been discarded. The intensity ofthe color is calculated as

I = R + G + B.

Note that this is not the best way to estimate perceived intensity since the three colors
contribute differently to the perception of intensity, butthis approximation is sufficient
for our present purposes.

The above transformation maps red, green and blue onto the three corners of a
triangle. Gray and white are both mapped to the same point at〈1/3, 1/3〉. This is
called thewhite pointof the color triangle. Note that the transformation of blackin the
RGB-space, i. e.〈0, 0, 0〉, is not defined (but may be mapped onto the white point).



It is possible to construct a color circle around the white point where the angle
describes the hue and the distance from the center depends onthe saturation of the
color. Because of the shape of the color space, the same distance from the white point
does not correspond to the same saturation in each direction.

Calculation of white point The white point of the image can be estimated from the
image data if we assume that the average color of the image is gray. The averagēR,
Ḡ, andB̄ of each of the three color channels are calculated and projected onto the
rg-plane:

r̄ =
R̄

R̄ + Ḡ + B̄

ḡ =
Ḡ

R̄ + Ḡ + B̄

the white point is set to

w = 〈r̄, ḡ〉 .

Assuming that the illumination is equal in the red, green andblue channels, the white
point can be directly set to〈1/3, 1/3〉.

If the illumination varies over the image it can be advantageous to use different
white points for different pars of the image, but in this caseit is important that the
average color of the different areas is the same. Otherwise,the same color in the
different regions will not be mapped to the same point.

Color coordinates Each color in the rg-plane is mapped to two values. The the angle
around the white point

ϕ = arctan

(

r − r̄

g − ḡ

)

and the saturation

s =
√

(r − r̄)2 + (g − ḡ)2,

that is, the distance from the white point (See Fig. 1). This results in the color coordi-
nate

p = 〈ϕ, s〉 .

Fig. 1 shows the result of mapping all the pixels of images onto the〈ϕ, s〉 space.
The differently colored object are clearly seen as dots within different regions of the
color space.

3 Classifying Colors

To find a region of the image with a particular color, we first need to classify the pixels.
We define a target color region using four values, the angleϕ, and the minimum and
maximum saturationsmin andsmax, and finally the width of the regionw. We want to



FIGURE 2: The algorithm applied to three different scenes. Top row: Six robots with colored
markers. Middle row: A simple scene with dots of different colors. Bottom row: An image of a
face. Left. the input image. Middle. The rg-colorspace withthe locations of the color coordinates
of the pixels in the image and the target color region highlighted. Right. The detected pixels in
the scene.



find all pixels, the color or which lies within this region. Wecan do this directly from
the〈ϕ, s〉 representation by testing

smin < s < smax,

and

ϕ − ω < ϕ < ϕ + ω.

However, this method is very time consuming since it involves calculating a square
root and arctan for each pixel in the image. There is also a division, that should be
avoided if possible. Fortunately, this test can be made muchfaster by getting rid of all
these operations.

A Faster Inclusion Test To make the color test faster, we map the problem onto a
vector representation. Assuming that the color angle for the region is given in degrees,
the target color vectorc = 〈cr, cg〉 for a region is given by

cr = sin

(

2πϕ

360

)

,

cg = cos

(

2πϕ

360

)

.

The width of the region is represented by the valuew which is calculated as,

w2 = cos2
(

2πω

360

)

.

The above calculations only need to be done once for each target region. To check
whether the color of a pixel lays within the target region, wefirst calculate the square
of the length of the color vector〈r, g〉 as

L2 = r2 + g2,

and the scalar product of the color and the target color

m = crr + cgg,

The following conditions are then tested

s2

min
< L2 < s2

max
, (1)

m > 0. (2)

and

m2 > w2L2. (3)

The color of the pixel lays within the target region if both these conditions are met.
Note that this formulation of the condition completely avoids any computationally slow
operations such as divisions, square roots or trigonometric functions, except for the
three initial calculations ofcr, cg andw2, but these are only made once and not for
every single pixel.



4 Color Clustering

The second step in finding potential targets is to cluster thepoints that fulfills the re-
quirement above. A clusterCi is defined by the set of coordinates of all its included
pixels. The center of the clusterc = 〈cx, cy〉 is calculated as the average position of
all pixels that have already been included in the cluster. Tofind the different clusters in
the image, we iterate over all pixels that fulfills the requirements (1) and (3) above.

Here, we use a simple algorithm that works well when the number of targets are
relatively sparse. For each pixels〈x, y〉 with the target color we test whether there is a
cluster center within the distanced from it. In that case, the new pixel is added to the
cluster. Otherwise, a new cluster is created with this pixelas its center. This procedure
continues until all pixels have been assigned to a cluster.

This method works well if the distanced is set to match the approximate size of the
targets. It would be possible to use much more advanced clustering algorithms (Duda
et al., 2000), but in many cases this simple method is sufficient.

5 Post-Processing

There are a number of methods that can be used after clustering to produce a more
stable output. These techniques can be used together but my also hinder each other in
some cases.

Noise Reduction After clustering, all clusters with less thanN pixels can be dis-
carded as noise. This is useful in many cases but may have the unwanted consequence
that a cluster that is temporarily smaller may disappear.

Size Selection If the number of targets are known, for example if we are tracking a
fixed number of robots, it is often a good idea to select thek largest clusters and discard
any smaller ones.

Tracking If the target objects are known to move continuously in the scene, it is
useful to assign the same index to the cluster belonging to the same target at each time
step. This can be accomplished either by finding the closest cluster from the previous
time step after clustering, or by using the centers of the previous clustering as the
starting point for the clusters in the current time step.

We use the former method as the latter is very sensitive to noise. When the new
set of clusters have been found, they are matched to the clusters found on the previous
time step. This is controlled by a parameter that decides howfar a cluster can move
and still be matched. Clusters that are not assign a new location are marked as unused
and may be reassigned at a later stage.

Although this method is far from perfect and much more advanced tracking meth-
ods exist, it works well in situations where the target object are not moving very fast in
the image and targets are well separated. In more complicated cases, it is necessary to
use a more able tracking system after this post-processing.



6 Implementation Details

The algorithm described above has been implemented as a set of modules in Ikaros
(Balkenius et al., 2007). The moduleColorTransformtransforms the input image from
RGB-space to rgI-space, that is, the rg-chromaticity planetogether with an intensity
channel. The result is sent to theColorClassifiermodule which performs the color
classification and sends its result to the moduleSpatialClusteringwhich finds the clus-
ters in the image. This sets up a processing pipeline from theimage to the table with
the found clusters. The parameters of the modules can be set as follows:

<module
class = "ColorTransform"
name = "ColorTransform"
transform = "RGB->rgI"

/>

<module
class = "ColorClassifier"
name = "ColorClassifier"
color = "145 degrees"
width = "30 degrees"
saturation_min = "0.05"
saturation_max = "0.35"
compensation = "yes"
statistics = "yes"

/>

<module
class = "SpatialClustering"
name = "SpatialClustering"
cluster_radius = "30"
min_cluster_size = "50"
tracking_distance = "0.1"
no_of_clusters = "6"

/>

Most of the parameters are self explanatory. The compensation parameter decides
whether the module should try to compensate for the color of the illumination using
the gray-world assumption described above.

The output from the module is a table of coordinates for the found clusters. For
debugging purposes, there are also two additional outputs.The first one shows the
locations of the input pixels in the color space. The second output shows the spatial
location of those pixels that pass the color test (See Fig. 2). These outputs can be turned
on or off using the parameterstatistics. Full documentation of the module together with
the source code can be found at the Ikaros web site (www.ikaros-project.org)

The performance of the algorithm is reasonably good. We tested an implementation
with very little optimization except of the ones described above. On a 2.66 GHz Dual-
Core Xeon computer, an image of size 704× 480 pixels with the scene shown in Fig. 2
is processed in on the average 7.3 ms. This is fast enough for real-time tracking in a
DV-stream.



Acknowledgements

This work was supported by the EU project MindRaces, FP6-511931.

References

Balkenius, C., Johansson, A. J., and Balkenius, A. (2003). Color constancy in visual
scene perception.Lund University Cognitive Studies, 98.

Balkenius, C., Morén, J., and Johansson, B. (2007). System-level cognitive modeling
with ikaros.Lund University Cognitive Studies, 133.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000).Pattern Classification. Wiley Inter-
science.

Ebner, M. (2004). A parallel algorithm for color constancy.Journal of Parallel and
Distributed Computing, 64(1):79–88.

Gershon, R., Jepson, A. D., and Tsotsos, J. K. (1987). From [R,G,B] to surface re-
flectance: Computing color constant descriptors in images.In McDermott, J. P.,
editor,Proc. of the 10th Int. Joint Conf. on Artificial Intelligence, volume 2, pages
755–758.


