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1 THE PROBLEMS OF BELIEF REVISION 

1.1 An Example 

Suppose that you have a database that contains, among other things, the following pieces 
of information (in some form of code): 

a:  All European swans are white. 
b:  The bird caught in the trap is a swan. 
g: The bird caught in the trap comes from Sweden. 
d:  Sweden is part of Europe. 

If your database is coupled with a program that can compute logical inferences in the 
given code, the following fact is derivable from a - d: 

e: The bird caught in the trap is white.  

Now suppose that, as a matter of fact, the bird caught in the trap turns out to be black. 
This means that you want to add the fact ¬e, i.e., the negation of e, to the database. But 
then the database becomes inconsistent. If you want to keep the database consistent, 
which is normally a sound methodology, you need to revise it. This means that some of 
the beliefs in the original database must be retracted. You don't want to give up all of the 
beliefs since this would be an unnecessary loss of valuable information. So you have to 
choose between retracting a, b, g or d.  

The problem of belief revision is that logical considerations alone do not tell you which 
beliefs to give up, but this has to be decided by some other means. What makes things 
more complicated is that beliefs in a database have logical consequences, so when giving 
up a belief you have to decide as well which of the consequences to retain and which to 
retract. For example, if you decide to retract a in the situation described here, a has as 
logical consequences, among others, the following two: 
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a':  All European swans except the one caught in the trap are white 

and 

a":  All European swans except some of the Swedish are white. 

Do you want to keep any of these sentences in the revised database? 

1.2 The Methodological Problems of Belief Revisions 

When trying to handle belief revisions in a computational setting, there are three main 
methodological questions to settle: 

(1)  How are the beliefs in the database represented? 

Most databases work with elements like facts and rules as primitive forms of 
representing information. The code used to represent the beliefs may be more or less 
closely related to standard logical formalism. A mechanism for belief revision is 
sensitive to the formalism chosen to represent the beliefs. 

(2)  What is the relation between the elements explicitly represented in the database 
and the beliefs that may be derived from these elements? 

This relation is to a large extent dependent on the application area of the database. In 
some cases the elements explicitly formulated in the database have a special status in 
comparison to the logical consequences of these beliefs that may be derived by some 
inference mechanism. In other cases, the formulation of the beliefs in the database is 
immaterial so that any representation that has the same logical consequences, i.e., the 
same set of implicit beliefs, is equivalent. As will be seen in several papers in this 
volume, the nature of the relation between explicit and implicit beliefs is of crucial 
importance for how the belief revision process is attacked. 

(3)  How are the choices concerning what to retract made? 

Logic alone is not sufficient to decide between which beliefs to give up and which to 
retain when performing a belief revision. What are the extralogical factors that determine 
the choices? One idea is that the information lost when giving up beliefs should be kept 
minimal. Another idea is that some beliefs are considered more important or entrenched 
than others and the beliefs that should be retracted are the least important ones. Within 
computer science the use of integrity constraints is a common way of handling the 
problem. Again, the methodological rules chosen here are dependent on the application 
area. 

 

1.3 Three Kinds of Belief Changes 
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A belief revision occurs when a new piece of information that is inconsistent with the 
present belief system (or database) is added to that system in such a way that the result is 
a new consistent belief system. But this is not the only kind of change that can occur in a 
belief system. Depending on how beliefs are represented and what kinds of inputs are 
accepted, different typologies of belief changes are possible. 

In the most common case, when beliefs are represented by sentences in some code, and 
when a belief is either accepted or rejected in a belief system K (so that no degrees of 
belief are considered), one can distinguish three main kinds of belief changes: 

(i) Expansion: A new sentence f is added to a belief system K together with the logical 
consequences of the addition (regardless of whether the larger set so formed is 
consistent). The belief system that results from expanding K by a sentence f will be 
denoted K+f. 

(ii) Revision: A new sentence that is inconsistent with a belief system K is added, but, in 
order to maintain consistency in the resulting belief system, some of the old sentences in 
K are deleted. The result of revising K by a sentence f will be denoted Kfif. 

(iii) Contraction: Some sentence in K is retracted without adding any new facts. In order 
for the resulting system to be closed under logical consequences some other sentences 
from K must be given up. The result of contracting K with respect to f will be denoted 
K‹f. 

Expansions of belief systems can be handled comparatively easily. K+f can simply be 
defined as the logical closure of K together with f: 

(Def +) K+f = {y: K È {f} 7 y} 

As is easily shown, K+f defined in this way will be closed under logical consequences 
and will be consistent when f is consistent with K. 

It is not possible to give a similar explicit definition of revisions and contractions in 
logical and set-theoretical notions only. The problems for revisions were presented in the 
introductory example. There is no purely logical reason for making one choice rather 
than the other among the sentences to be retracted, but we have to rely on additional 
information about these sentences. Thus, from a logical point of view, there are several 
ways of specifying the revision Kfif. Though Kfif cannot be characterized uniquely in 
logical terms, the general properties of a revision function can be investigated, and – in 
some cases, at least – algorithms can be found for computing revision functions. These 
two goals will be handled technically by using the notion of a revision function "fi" 
which has two arguments, a belief system K and a sentence f, and which has as its value 
the revised belief system Kfif. 

The contraction process faces parallel problems. To give a simple example, consider a 
belief system K which contains the sentences f, y, f3y ® c and their logical 
consequences (among which is c). Suppose that we want to contract K by deleting c. Of 
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course, c must be deleted from K when forming K‹c, but also at least one of the 
sentences f, y, or f3y ® c must be given up in order to maintain consistency. Again, 
there is no purely logical reason for making one choice rather than the other. Another 
concrete example is provided by Fagin, Ullman and Vardi (1983, p. 353). 

The common denominator in both this example and the introductory one is that the 
database is not viewed merely as a collection of logically independent facts, but rather as 
a collection of axioms from which other facts can be derived. It is the interaction 
between the updated facts and the derived facts that is the source of the problem. 

In parallel with revision we can introduce the concept of a contraction function "‹" which 
has the same two arguments as before, i.e., a belief system K and a sentence f (to be 
retracted from K), and which produces as its value the belief system K‹f. In Section 3.3, 
I shall show that the problems of revision and contraction are closely related – being two 
sides of the same coin. 

1.4 Two Approaches to Describing Belief Revisions 

When tackling the problem of belief revision there are two general strategies to follow, 
namely, to present explicit constructions of the revision process and to formulate 
postulates for such constructions. For a computer scientist the ultimate solution to the 
problem about belief revision is to develop algorithms for computing appropriate 
revision and contraction functions for an arbitrary belief system. In this volume several 
proposals for constructions of revision methods will be presented. These methods are not 
presented as pure algorithms, but on a slightly more general level. 

However, in order to know whether an algorithm is successful or not it is necessary to 
determine what an 'appropriate' revision function is. Our standards for revision and 
contraction functions will be various rationality postulates. The formulations of these 
postulates are given in a more or less equational form. One guiding idea is that the 
revision Kfif of K with respect to f should represent the minimal change of K needed to 
accommodate f consistently. The consequences of the postulates will also be 
investigated. 

Much of the theoretical work within belief revision theory consists of connecting the two 
approaches. This is done via a number of representation theorems, which show that the 
revision methods that satisfy a particular set of rationality postulates are exactly those 
that fall within some computationally well defined class of methods.1 

2 MODELS OF BELIEF STATES 

2.1 Preliminaries 

 

1For further discussion of the two strategies cf. Makinson (1985, pp. 350-351). 
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Before we can start discussing models of belief revision, we must have a way of 
modelling belief states since a revision method is defined as a function from one belief 
state into another. The most common models of belief states in computational contexts 
are sentential or propositional, in the sense that the elements constituting the belief 
systems are coded as formulas representing sentences. This kind of model will be the 
focus of this introduction, but some alternative types of models will be encountered in 
the volume. 

But even if we stick to propositional models of belief systems, there are many options. 
First of all, we must choose an appropriate language to formulate the belief sentences. 
For example, databases include some form of rules, and there are many ways of 
formalizing these: as quantified sentences in first order logic, as PROLOG rules 
(corresponding to Horn-clauses), as default statements (e.g., in the style of Reiter 
(1980)), as probability statements, etc. 

In this introduction, I shall work with a language L which is based on first order logic. 
The details of L will be left open for the time being. It will be assumed that L is closed 
under applications of the boolean operators ¬ (negation), 3 (conjunction), £ (disjunction) 
and ® (implication). We will use f, y, c, etc. as variables over sentences in L. It is also 
convenient to introduce the symbols Å and ^ for the two sentential constants "truth" and 
"falsity."  

What is accepted in a formal model of a belief state are not only the sentences that are 
explicitly put into the database, but also the logical consequences of these beliefs. Hence, 
the second factor which has to be decided upon when modelling a belief state is what 
logic governs the beliefs. In practice this depends on which theorem-proving mechanism 
is used in combination with the database. However, when doing a theoretical analysis, 
one wants to abstract from the idiosyncracies of a particular algorithm for theorem 
proving and start from a more general description of the logic. If the logic is 
undecidable, further complications will arise, but we will ignore these for the time being. 

I shall assume that the underlying logic includes classical propositional logic and that it 
is compact.2 If K logically entails f we will write this as K 7 f. Where K is a set of 
sentences, we shall use the notation Cn(K) for the set of all logical consequences of K, 
i.e., Cn(K) = {f: K 7 f}. All papers in this volume presume classical logic, except the 
one by Cross and Thomason where a four-valued logic is used instead. 

2.2 Belief Sets  

 

2 A logic is compact iff whenever A is a logical consequence of a set of sentence K, then 
there is a finite subset K' of K such that A is a logical consequence of K'. 
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The simplest way of modelling a belief state is to represent it by a set of sentences from 
L. Accordingly, we define a belief set as a set K of sentences in L which satisfies the 
following integrity constraint:3 

(I) If K logically entails y, then y Î K.  

In logical parlance, (I) says that K is closed under logical consequences. The 
interpretation of such a set is that it contains all the sentences that are accepted in the 
modelled belief state. Consequently, when f Î K we say that f is accepted in K and 
when ¬f Î K we say that f is rejected in K. It should be noted that a sentence being 
accepted does not imply that it has any form of justification or support.4 A belief set can 
also be seen as a theory which is a partial description of the world. "Partial" because in 
general there are sentences f such that neither f nor ¬f are in K. 

By classical logic, whenever K is inconsistent, then K 7 f for every sentence f of the 
language L. This means that there is exactly one inconsistent belief set under our 
definition, namely, the set of all sentences of L. We introduce the notation K^ for this 
belief set.  

2.3 Belief Bases 

Against modelling belief states as belief sets it has been argued (Makinson 1985, 
Hansson 1990, 1991, Nebel 1990, Fuhrmann 1991) that some of our beliefs have no 
independent standing but arise only as inferences from our more basic belief. It is not 
possible to express this distinction in a belief set since there are no markers for which 
beliefs are basic and which are derived. Furthermore, it seems that when we perform 
revisions or contractions we never do it to the belief set itself which contains an infinite 
number of elements, but rather on some finite base for the belief set.  

Formally, this idea can be modelled by saying that BK is a base for a belief set K iff BK 
is a finite subset of K and Cn(BK) = K. Then instead of introducing revision and 
contraction functions that are defined on belief sets it is assumed that these functions are 
defined on bases. Such functions will be called base revisions and base contractions 
respectively. This approach introduces a more finegrained structure since we can have 
two bases BK and CK such that Cn(BK) = Cn(CK) but BK ≠ CK. The papers by Nebel 
and Hansson in this volume concern base revisions. They will be presented in Section 
3.5. 

There is no general answer to the question of which model is the best of full belief sets or 
bases, but this depends on the particular application area. Within computer science 
applications, bases seem easier to handle since they are explicitly finite structures. 

 

3Belief sets were called knowledge sets in Gärdenfors and Makinson (1988). 

4For further discussion of the interpretation of belief sets cf. Gärdenfors (1988). 
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However, it has been argued in Gärdenfors (1990) that much of the computational 
advantages of bases for belief sets can be modelled by belief sets together with the 
notion of epistemic entrenchment of beliefs (cf. Section 4.1). 

2.4 Possible Worlds Models 

An obvious objection to using sets of sentences as models of belief states is that the 
objects of belief are normally not sentences but rather the contents of sentences, that is, 
propositions. The characterization of propositions that has been most popular among 
philosophers during recent years is to identify them with sets of possible worlds. The 
basic semantic idea connecting sentences with propositions is then that a sentence 
expresses a given proposition if and only if it is true in exactly those possible worlds that 
constitute the set of worlds representing the proposition. 

By taking beliefs to be beliefs in propositions, we can then model a belief state by a set 
WK of possible worlds. The epistemic interpretation of WK is that it is the narrowest set 
of possible worlds in which the individual being in the modelled belief state is certain to 
find the actual world. This kind of model of a belief state has been used by Harper 
(1977), Grove (1988), among others and in a generalized form by Spohn (1988) (also cf. 
the comparisons in Gärdenfors (1978)). In this volume, Katsuno and Mendelzon, and 
Morreau use this way of modelling belief states. 

There is a very close correspondence between belief sets and possible worlds models. 
For any set WK of possible worlds we can define a corresponding belief set K as the set 
of those sentences that are true in all worlds in WK (assuming that the set of 
propositional atoms is finite). It is easy to verify that K defined in this way satisfies the 
integrity constraint (I) so that it is indeed a belief set. Conversely, for any belief set K, 
we can define a corresponding possible worlds model WK by identifying the possible 
worlds in WK with the maximal consistent extensions of K. Then we say that a sentence 
f is true in such an extension w iff f Î w. Again it is easy to verify that this will 
generate an appropriate possible worlds model (for details cf. Grove (1988)). 

From a computational point of view, belief sets are much more tractable than possible 
worlds models. So even though possible worlds models are popular among logicians, the 
considerations here show that the two kinds of models are basically equivalent. And if 
we want to implement belief revision systems, sentential models like belief sets, and in 
particular bases for belief sets, are much easier to handle. 

 

2.5 Justifications vs. Coherence Models 

Another question that has to be answered when modelling a state of belief is whether the 
justifications for the beliefs should be part of the model or not. With respect to this 
question there are two main approaches. One is the foundations theory which holds that 
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one should keep track of the justifications for one's beliefs: Propositions that have no 
justification should not be accepted as beliefs. The other is the coherence theory which 
holds that one need not consider the pedigree of one's beliefs. The focus is instead on the 
logical structure of the beliefs – what matters is how a belief coheres with the other 
beliefs that are accepted in the present state.5 The belief sets presented above clearly fall 
into the latter category. 

It should be obvious that the foundations and the coherence theories have very different 
implications for what should count as rational changes of belief systems. According to 
the foundations theory, belief revision should consist, first, in giving up all beliefs that 
no longer have a satisfactory justification and, second, in adding new beliefs that have 
become justified. On the other hand, according to the coherence theory, the objectives 
are, first, to maintain consistency in the revised epistemic state and, second, to make 
minimal changes of the old state that guarantee sufficient overall coherence. Thus, the 
two theories of belief revision are based on conflicting ideas of what constitutes rational 
changes of belief. The choice of underlying theory is, of course, also crucial for how a 
computer scientist will attack the problem of implementing a belief revision system. 

Doyle's paper in this volume deals with the relations between justification theories and 
coherence theories of belief revision. In an earlier paper (Gärdenfors 1990), I presented 
some arguments for preferring the coherence approach to the foundations approach. 
Doyle argues that I have overemphasized the differences between the two approaches. 
He also wants to show that the foundations approach represents the most direct way of 
making the coherence approach computationally accessible. 

Galliers' theory of autonomous belief revision, also in this volume, suggests in another 
way that the choice between coherence and foundational theories may not be exclusive; 
her theory in fact represents a blend between the two approaches. In a sense, also the 
belief base models presented in Section 2.3 show traces of justificationalism – the beliefs 
in the base are thought of as more foundational than the derived beliefs. 

 

 

5Harman (1986) presents an analysis of the epistemological aspects of the two 
approaches. 
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3 RATIONALITY POSTULATES FOR BELIEF REVISION 

3.1 The AGM Postulates for Revision 

In this section, it will be assumed that belief sets (that is sets of sentences closed under 
logical consequences) are used as models of belief states. The goal is now to formulate 
postulates for rational revision and expansion functions defined over such belief sets.  

The underlying motivation for these postulates (which are taken from Alchourrón, 
Gärdenfors, and Makinson (1985), hence the name) is that when we change our beliefs, 
we want to retain as much as possible from our old beliefs – we want to make a minimal 
change. Information is in general not gratuitous, and unnecessary losses of information 
are therefore to be avoided. This heuristic criterion may be called the criterion of 
informational economy.  

However, it turns out to be difficult to give a precise quantitative definition of the loss of 
information (see, e.g., the discussion of minimality in Gärdenfors 1988, pp. 66-68). 
Instead we shall follow another line of specifying 'minimal change': We assume that the 
sentences in a belief set have different degrees of epistemic entrenchment, and when we 
give up sentences when forming a revision or a contraction, we give up those with the 
lowest degree of entrenchment. The idea of epistemic entrenchment will be presented in 
greater detail in Section 4.1. 

It is assumed that for every belief set K and every sentence f in L, there is a unique 
belief set Kfif representing the revision of K with respect to f. In other words fi is a 
function taking a belief set and a sentence as arguments and giving a belief set as a result. 
This is admittedly a strong assumption, since in many cases, the information available is 
not sufficient to determine a unique revision. However, from a computational point of 
view this assumption is gratifying. In Doyle (1991) and Galliers' paper in this volume 
this assumption is not made. 

The first postulate requires that the outputs of the revision function indeed be belief sets: 

(Kfi1)  For any sentence f and any belief set K, Kfif is a belief set. 

The second postulate guarantees that the input sentence f is accepted in Kfif: 

(Kfi2)  f Î Kfif. 

The normal application area of a revision process is when the input f contradicts what is 
already in K, that is ¬f Î K. However, in order to have the revision function defined for 
all arguments, we can easily extend it to cover the case when ¬f Ï K. In this case, 
revision is identified with expansion. For technical reasons, this identification is divided 
into two parts: 

(Kfi3)  Kfif 1 K+f. 
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(Kfi4) If ¬f Ï K, then K+f 1 Kfif. 

The purpose of a revision is to produce a new consistent belief set. Thus Kfif should be 
consistent, unless f is logically impossible: 

(Kfi5) Kfif = K^ if and only if 7 ¬f. 

It should be the content of the input sentence f rather than its particular linguistic 
formulation that determines the revision. In other words, belief revisions should be 
analysed on the knowledge level and not on the syntactic level. This means that logically 
equivalent sentences should lead to identical revisions: 

(Kfi6) If 7 f « y, then Kfif = Kfiy. 

The postulates (Kfi1) - (Kfi6) are elementary requirements that connect K, f and Kfif. 
This set will be called the basic set of postulates. The final two conditions concern 
composite belief revisions. The idea is that, if Kfif is a revision of K and Kfif is to be 
changed by a further sentence y, such a change should be made by expansions of Kfif 
whenever possible. More generally, the minimal change of K to include both f and y, 
that is, Kfif3y, ought to be the same as the expansion of Kfif by y, so long as y does 
not contradict the beliefs in Kfif. For technical reasons the precise formulation is split 
into two postulates: 

(Kfi7) Kfif3y 1 (Kfif)+y. 

(Kfi8) If ¬y Ï Kfif, then (Kfif)+y 1 Kfif3y. 

When ¬y Î K, then (Kfif)+y is K^, which is why the proviso is needed in (Kfi8) but not 
in (Kfi7). 

We turn next to some consequences of the postulates. It can be shown (Gärdenfors, 
1988, p. 57) that in the presence of the basic set of postulates (Kfi7) is equivalent to: 

(1)  Kfif Ç Kfiy 1 Kfif£y. 

Another principle that is useful is the following 'factoring' condition: 

(2)  Kfif£y = Kfif or Kfif£y = Kfiy or Kfif£y = Kfif Ç Kfiy. 

It can be shown that, given the basic postulates, (2) is in fact equivalent to the 
conjunction of (Kfi7) and (Kfi8).  

Furthermore (Kfi7) and (Kfi8) together entail the following identity criterion: 

(3)  Kfif = Kfiy if and only if y Î Kfif and f Î Kfiy. 

The postulates (Kfi1) - (Kfi8) do not uniquely characterise the revision Kfif in terms of 
only K and f. This is, however, as it should be. I believe it would be a mistake to expect 
that only logical properties are sufficient to characterise the revision process.  
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3.2 The AGM Postulates for Contraction 

The postulates for the contraction function '‹' will, to an even larger extent than for 
revisions, be motivated by the princple of informational economy. The first postulate is 
of a familiar kind: 

(K‹1) For any sentence f and any belief set K, K‹f is a belief set. 

Because K‹f is formed from K by giving up some beliefs, it should be required that no 
new beliefs occur in K‹f: 

(K‹2) K‹f 1 K. 

When f Ï K, the criterion of informational economy requires that nothing be retracted 
from K: 

(K‹3) If f Ï K, then K‹f = K. 

We also postulate that the sentence to be contracted not be a logical consequence of the 
beliefs retained in K‹f (unless f is logically valid in which case it can never be retracted 
because of the integrity constraint (I)): 

(K‹4) If not 7 f, then f Ï K‹f. 

From (K‹1) to (K‹4) it follows that  

(4)   If f Ï K, then (K‹f)+f 1 K. 

In other words, if we first retract f and then add f again to the resulting belief set K‹f, 
no beliefs are accepted that were not accepted in the original belief set. The criterion of 
informational economy demands that as many beliefs as possible should be kept in K‹f. 
One way of guaranteeing this is to require that expanding K‹f by f should take us back 
to exactly the same state as before the contraction, that is K: 

(K‹5)  If f Î K, then K 1 (K‹f)+f. 

This is the so called recovery postulate, which enables us to ’undo’ contractions. It has 
turned out to be the most controversial among the AGM postulates for contraction.  

The sixth postulate is analogous to (Kfi6): 

(K‹6) If 7 f « y, then K‹f = K‹y. 

Postulates (K‹1) - (K‹6) are called the basic set of postulates for contractions. Again, two 
further postulates for contractions with respect to conjunctions will be added. The 
motivations for these postulates are much the same as for (Kfi7) and (Kfi8). 

(K‹7) K‹f Ç K‹y 1 K‹f3y. 

(K‹8) If f Ï K‹f3y, then K‹f3y 1 K‹y. 
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It is interesting to note that (K‹7) is in fact equivalent, given the basic postulates, to the 
seemingly weaker  

(5)  K‹f Ç Cn({f}) 1 K‹f3y. 

In parallel with (2) it can be shown that (K‹7) and (K‹8) are jointly equivalent to the 
following condition: 

(6)   K‹f3y = K‹f or K‹f3y = K‹y or K‹f3y = K‹f Ç K‹y. 

A useful consequence of (6) is the following which says that K‹f3y is 'covered' either by 
K‹f or by K‹y: 

(7)   Either K‹f3y 1 K‹f or K‹f3y 1 K‹y. 

The postulates for revision and contraction and their consequences are dicussed further 
in Chapter 3 of Gärdenfors (1988). 

3.3 From Contractions to Revisions and vice versa 

We turn next to a study of the connections between revision and contraction functions. In 
the previous two sections they were characterized by two sets of postulates. These 
postulates are independent in the sense that the postulates for revisions do not refer to 
contractions and vice versa. A natural question is now whether either contraction or 
revision can be defined in terms of the other. Here we shall present two positive answers 
to this question. 

A revision of a knowledge set can be seen as a composition of a contraction and an 
expansion. More precisely: In order to construct the revision Kfif, one first contracts K 
with respect to ¬f and then expands K‹¬f by f. Formally, we have the following 
definition which is called the Levi identity: 

(Def fi)  Kfif = (K‹¬f)+f 

That this definition is appropriate is shown by the following result: 

Theorem 1: If a contraction function '‹' satisfies (K‹1) to (K‹4) and (K‹6), then the 
revision function 'fi' obtained from (Def fi) satisfies (Kfi1) - (Kfi6). Furthermore, if (K‹7) 
also is satisfied, (Kfi7) will be satisfied for the defined revision function; and if (K‹8) 
also is satisfied, (Kfi8) will be satisfied for the defined revision function. 

This result supports (Def fi) as an appropriate definition of a revision function. Note that 
the controversial recovery postulate (K‹5) is not used in the theorem. 

Conversely, contractions can be defined in terms of revisions. The idea is that a sentence 
y is accepted in the contraction K‹f if and only if y is accepted both in K and in Kfi¬f. 
Formally, this amounts to the following definition which has been called the Harper 
identity: 
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(Def ‹) K‹f = K Ç Kfi¬f. 

Again, this definition is supported by the following result: 

Theorem 2: If a revision function 'fi' satisfies (Kfi-1) to (Kfi6), then the contraction 
function '‹' obtained from (Def ‹) satisfies (K‹1) - (K‹6). Furthermore, if (Kfi7) is 
satisfied, (K‹7) will be satisfied for the defined contraction function; and if (Kfi8) is 
satisfied, (K‹8) will be satisfied for the defined contraction function. 

The two theorems show that the defined revision and contraction functions have the right 
properties. Hence, the two sets of postulates for revision and contraction functions are 
interchangeable and a method for constructing one of the functions would automatically, 
via (Def fi) or (Def ‹), yield a construction of the other function satisfying the desired set 
of postulates. 

3.4 Representation Theorems 

This section will introduce a first kind of explicit modelling of a contraction function for 
belief sets. Via the Levi identity (Def fi) and Theorem 1, such a model can be used to 
define a revision function as well.  

The problem in focus is how to define the contraction K‹f with respect to a belief set K 
and a proposition f. A general idea is to start from K and then give some recipe for 
choosing which propositions to delete from K so that K‹f does not contain f as a logical 
consequence. According to the criterion of informational economy we should look at as 
large a subset of K as possible.  

The following notion is useful: A belief set K' is a maximal subset of K that fails to imply 
f if and only if (i) K' 1 K, (ii) f Ï Cn(K'), and (iii) for any K" such that K'Ì K"Í K,  
f Î Cn(K"). The last clause entails that if K' were to be expanded by some sentence from 
K-K’ it would entail f. The set of all belief sets that fail to imply f will be denoted K^f. 
Using the assumption that 7 is compact it is easy to show that this set is nonempty, 
unless f is logically valid. 

A first tentative solution to the problem of constructing a contraction function is to 
identify K‹f with one of the maximal subsets in K^f. Technically, this can be done with 
the aid of a selection function g that picks out an element g(K^f) of K^f for any K and 
any f whenever K^f is nonempty. We then define K‹f by the following rule: 

(Maxichoice) K‹f = g(K^f) when not 7f, and K‹f = K otherwise. 

Contraction functions determined by some such selection function were called 
maxichoice contraction functions in Alchourrón, Gärdenfors and Makinson (1985). 

A first test for this construction is whether it has the desirable properties. It is easy to 
show that any maxichoice contraction function satisfies (K‹1) - (K‹6). But it will also 
satisfy the following fullness condition: 
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(K‹F) If y Î K and y Ï K‹f, then y ® f Î K‹f for any belief set K. 

We can now show that (K‹1) - (K‹6) and (K‹F) characterizes maxichoice contraction 
function in the sense of the following representation theorem. Let us say that a 
contraction function '‹' can be generated by a maxichoice contraction function iff there is 
some selection function g such that '‹' is identical with the function obtained from g by 
the maxichoice rule above. 

Theorem 3: Any contraction function that satisfies (K‹1) - (K‹6) and (K‹F) can be 
generated by a maxichoice contraction function.  

However, in a sense, maxichoice contraction functions in general produce contractions 
that are too large. A result from Alchourrón and Makinson (1982) is applicable here: Let 
us say that a belief set K is maximal iff for every sentence y, either y Î K or ¬y Î K. 
One can now show the following discomforting result: 

Theorem 4: If a revision function 'fi' is defined from a maxichoice contraction function '‹' 
by means of the Levi identity, then, for any f such that ¬f Î K, Kfif will be maximal.  

In a sense, maxichoice contraction functions create maximal belief sets. So a second 
tentative idea is to assume that K‹f contains only the propositions that are common to all 
of the maximal subsets in K^f: 

(Meet) K‹f = Ç(K^f) whenever K^f is nonempty and K‹f = K otherwise. 

This kind of function was called full meet contraction function in Alchourrón, 
Gärdenfors, and Makinson (1985). Again, it is easy to show that any full meet 
contraction function satisfies (K‹1) - (K‹6). They also satisfy the following intersection 
condition: 

(K‹I)  For all f and y, K‹f3y = K‹f Ç K‹y. 

We have the following representation theorem: 

Theorem 5: A contraction function satisfies (K‹1) - (K‹6) and (K‹I) iff it can be 
generated as a full meet contraction function. 

The drawback of of full meet contraction is the opposite of maxichoice contraction – in 
general it results in contracted belief sets that are far too small. The following result is 
proved in Alchourrón and Makinson (1982): 

Theorem 6: If a revision function 'fi' is defined from a full meet contraction function '‹' 
by means of the Levi identity, then, for any f such that ¬f Î K, Kfif = Cn({f}). 

In other words, the revision will contain only f and its logical consequences. 

A third attempt is to use only some of the maximal subsets in K^f when defining K‹f. 
Technically, a selection function g can be used to pick out a nonempty subset g(K^f) of 
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K^f, if the latter is nonempty, and that puts g(K^f) = K in the limiting case when K^f 
is empty. The contraction function can then be defined as follows: 

(Partial meet): K‹f = Çg(K^f). 

Such a contraction function was called a partial meet contraction function in 
Alchourrón, Gärdenfors, and Makinson (1985). The following representation theorem 
shows that  
(K‹1) - (K‹6) indeed characterizes the class of partial meet contraction functions: 

Theorem 7: For every belief set K, '‹' is a partial meet contraction function iff '‹' satisfies 
postulates (K‹1) - (K‹6). 

So far we have put no constraints on the selection function g. The idea of g picking out 
the 'best' elements of K^f can be made more precise by assuming that there is an 
ordering of the maximal subsets in K^f that can be used to pick out the top elements. 
Technically, we do this by introducing the notation M(K) for the union of the family of 
all the sets K^f, where f is any proposition in K that is not logically valid. Then it is 
assumed that there exists a transitive and reflexive ordering relation ≤ on M(K). When 
K^f is nonempty, this relation can be used to define a selection function that picks out 
the top elements in the ordering: 

(Def g) g(K^f) = {K' Î K^f: K" ≤ K' for all K" Î K^f} 

A contraction function that is determined from ≤ via the selection function g given by  
(Def g) will be called a transitively relational partial meet contraction function. This 
way of defining the selection function constrains the class of partial meet contraction 
functions that can be generated: 

Theorem 8: For any belief set K, '‹' satisfies (K‹1) - (K‹8) iff '‹' is a transitively relational 
partial meet contraction function. 

Thus we have found a way of connecting the rationality postulates with a general way of 
modelling contraction functions. The drawback of the construction is that the computa-
tional costs involved in determining the content of the relevant maximal subsets of a 
belief set K are so overwhelming that we should take a look at some other possible 
solutions to the problem of constructing belief revisions and contractions. 

3.5 Contraction and Revision of Bases 

As a generalization of the AGM postulates several authors have suggested postulates for 
revisions and contractions of bases for belief sets rather than the belief sets themselves. 
In this volume the papers by Hansson and Nebel (see also Fuhrmann 1989, Hansson 
1989, 1991, Makinson 1987, Nebel 1990) use this kind of model. As Hansson writes in 
his paper, "this model is based on the intuition that some of our beliefs have no 
independent standing but arise only as inferences from our more basic beliefs."  
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Hansson and Nebel analyse various forms of base revision and base contractions. Nebel 
evaluates his models, in a number of theorems, in relation to the AGM postulates, but 
Hansson also introduces some postulates that are special for base revision. For example, 
his postulate of relevance can (slightly simplified) be written as follows in my 
terminology: 

(8) If y Î H, but y Ï H‹f, then there is some H' such that H‹f 1 H'1 H and  
 f Ï Cn(H'), but f Î Cn(H' È {y}). 

Here H denotes a finite base for a belief state consisting of sentences from L. The logical 
closure of H, that is Cn(H), will be a belief set. The intuition behind this postulate is that 
if a sentence y is retracted from H when f is rejected, then y plays some role in the fact 
that H but not H‹f logically entails f. On the basis of relevance and other postulates for 
base contraction, Hansson proves several representation theorems (and further results 
can be found in Hansson (1991)). 

An interesting feature of Nebel's paper is that he investigates the computational 
complexity of different belief revision procedures. As far as I know, he is the first one to 
attack these issues. An initial problem is that already the trivial case of deciding whether  
y Î Cn(Ø)fif is co-NP-complete so that a more finegrained set of complexity classes are 
needed than just saying that belief revision is NP-hard. Nebel solves this problem by 
using the polynomial hierarchy of complexity classes (Garey and Johnson 1979). On the 
basis of this hierarchy, he is then able to prove a number of results concerning the 
complexity of various revision methods. The analysis shows that all base revision 
methods analyzed in his paper that satisfy the full set of AGM postulates turn out to be 
no harder than ordinary propositional derivability. 

4 CONSTRUCTIVE MODELS 

4.1 Epistemic Entrenchment 

Even if all sentences in a belief set are accepted or considered as facts (so that they are 
assigned maximal probability), this does not mean that all sentences are are of equal 
value for planning or problem-solving purposes. Certain pieces of our knowledge and 
beliefs about the world are more important than others when planning future actions, 
conducting scientific investigations, or reasoning in general. We will say that some 
sentences in a belief system have a higher degree of epistemic entrenchment than others. 
This degree of entrenchment will, intuitively, have a bearing on what is abandoned from 
a belief set, and what is retained, when a contraction or a revision is carried out. This 
section begins by presenting a set of postulates for epistemic entrenchment which will 
serve as a basis for a constructive definition of appropriate revision and contraction 
functions. 

The guiding idea for the construction is that when a belief set K is revised or contracted, 
the sentences in K that are given up are those having the lowest degrees of epistemic 
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entrenchment. Fagin, Ullman and Vardi (1983), pp. 358 ff., introduce the notion of 
"database priorities" which is closely related to the idea of epistemic entrenchment and is 
used in a similar way to update belief sets. However, they do not present any 
axiomatization of this notion. Section 5 of Nebel’s paper in this volume provides a 
precise characterization of the relationship between epistemic entrenchment and database 
priorities. 

We will not assume that one can quantitatively measure degrees of epistemic 
entrenchment, but will only work with qualitative properties of this notion. One reason 
for this is that we want to emphasise that the problem of uniquely specifying a revision 
function (or a contraction function) can be solved, assuming only very little structure on 
the belief sets apart from their logical properties.  

If f and y are sentences in L, the notation f ≤ y will be used as a shorthand for "y is at 
least as epistemically entrenched as f." The strict relation f < y, representing "y is 
epistemically more entrenched than f," is defined as f ≤ y and not y ≤ f. 

Postulates for epistemic entrenchment: 

(EE1)  If f ≤ y and y ≤ c, then f ≤ c  (transitivity) 
(EE2)  If f 7 y, then f ≤ y    (dominance) 
(EE3)  For any f and y, f ≤ f3y or y ≤ f3y (conjunctiveness) 
(EE4)  When K ≠ K^, f Ï K iff f ≤ y, for all y (minimality) 
(EE5)  If y ≤ f for all y, then 7 f   (maximality) 

The justification for (EE2) is that if f logically entails y, and either f or y must be 
retracted from K, then it will be a smaller change to give up f and retain y rather than to 
give up y, because then f must be retracted too, if we want the revised belief set to 
satisfy the integrity constraint (I). The rationale for (EE3) is as follows: If one wants to 
retract f3y from K, this can only be achieved by giving up either f or y and, 
consequently, the informational loss incurred by giving up f3y will be the same as the 
loss incurred by giving up f or that incurred by giving up y. (Note that it follows already 
from (EE2) that f3y ≤ f and f3y ≤ y.) The postulates (EE4) and (EE5) only take care 
of limiting cases: (EE4) requires that sentences already not in K have minimal epistemic 
entrenchment in relation to K; and (EE5) says that only logically valid sentences can be 
maximal in ≤. (The converse of (EE5) follows from (EE2), since if 7 f, then y 7 f, for 
all y.) 

It should be noted that the relation ≤ is only defined in relation to a given K – different 
belief sets may be associated with different orderings of epistemic entrenchment.6 

 

6Rott (1992) has developed a generalized notion of epistemic entrenchment which is not 
dependent on a particular K. 
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We mention the following simple consequences of these postulates: 

Lemma: Suppose the ordering ≤ satisfies (EE1) - (EE3). Then it also has the following 
properties: 

(i)  f ≤ y or y ≤ f (connectivity); 
(ii)  If y3c ≤ f, then y ≤ f or c ≤ f;  
(iii)  f < y iff f3y < y. 
(iv)  If c ≤ f and c ≤ y, then c ≤ f3y. 
(v)  If f ≤ y, then f ≤ f3y. 

The main purpose of this section is to show the connections between orderings of 
epistemic entrenchment and the AGM contraction and revision functions presented in 
Sections 3.1 and 3.2. We will accomplish this by providing two conditions, one of which 
determines an ordering of epistemic entrenchment assuming a contraction function and a 
belief set as given, and the other of which determines a contraction function assuming an 
ordering of epistemic entrenchment and a belief set as given. The first condition is: 

(C≤) f ≤ y if and only if f Ï K‹f3y or 7 f3y. 

The idea underlying this definition is that when we contract K with respect to f3y we 
must give up f or y (or both) and f should be retracted just in case y is at least as 
epistemically entrenched as f. In the limiting case when both f and y are logically valid, 
they are of equal epistemic entrenchment (in conformity with (EE2)). 

The second, and from a constructive point of view most central, condition gives an 
explicit definition of a contraction function in terms of the relation of epistemic 
entrenchment: 

(C‹) y Î K‹f if and only if y Î K and either f < f £ y or 7f. 

Condition (C‹) provides us with a tool for explicitly defining a contraction function in 
terms of the ordering ≤. An encouraging test of the appropriateness of such a definition is 
the following theorem proved in Gärdenfors and Makinson (1988): 

Theorem 9: If an ordering ≤ satisfies (EE1) - (EE5), then the contraction function which 
is uniquely determined by (C‹) satisfies (K‹1) - (K‹8) as well as the condition (C≤ ). 

Conversely, we can show that if we start from a given contraction function and 
determine an ordering of epistemic entrenchment with the aid of condition (C≤), the 
ordering will have the desired properties: 

Theorem 10: If a contraction function '‹' satisfies (K‹1) - (K‹8), then the ordering ≤ that is 
uniquely determined by (C≤) satisfies (EE1) - (EE5) as well as the condition (C‹). 

These results suggest that the problem of constructing appropriate contraction and 
revision functions can be reduced to the problem of providing an appropriate ordering of 
epistemic entrenchment. Furthermore, condition (C‹) gives an explicit answer to which 



  19 

sentences are included in the contracted belief set, given the initial belief set and an 
ordering of epistemic entrenchment. From a computational point of view, applying (C‹) 
is trivial, once the ordering ≤ of the elements of K is given. 

The comparison f < f £ y in (C‹) is somewhat counterintuitive. Rott (1991) has 
investigated the following more natural version of the condition: 

(C‹R) y Î K‹Rf if and only if y Î K and either f < y or 7f. 

He then shows that the contraction function '‹R' defined in this way has the following 
properties: 

Theorem 11: Let '‹R' be the contraction function defined in (C‹R). If ≤ satisfies (EE1) - 
(EE5), then '‹R' satisfies (K‹1) - (K‹4) and (K‹6) - (K‹8), but not (K‹5). 

Since '‹R' does not satisfy the controversial 'recovery' postulate (K‹5), it follows that '‹R' 
defined by (C‹R) is in general not identical to '‹' defined by (C‹).7 However, let 'fiR' and 
'fi' be the revision functions defined from '‹R' and '‹' by the Levi identity. Rott proves: 

Theorem 12: 'fiR' and 'fi' are identical revision functions. 

A consequence of this theorem is that if we are only interested in modelling revisions 
and not contractions, we can use the extremely simple test (C‹R) when computing the 
revision functions, without having to bother about the disjunctions in (C‹). 

4.2 Safe Contraction 

Yet another approach to the problem of constructing contraction functions was 
introduced by Alchourrón and Makinson (1985) and is called safe contraction. Their 
contraction procedure can be described as follows: Let K be a belief set, and suppose that 
we want to contract K with respect to f. Alchourrón and Makinson postulate a 
"hierarchy" < over K that is assumed to be acyclical (that is, for no f1, f2 ..., fn in K is it 
the case that f1< f2 < ... < fn < f1). Given such a hierarchy, we say that an element y is 
safe with respect to f iff y is not a minimal element (under <) of any minimal subset K' 
of K such that K' 7 f. Equivalently, every minimal subset K' of K such that K' 7 f either 
does not contain y or else contains some c such that c < y. Intuitively, the idea is that y 
is safe if it can never be "blamed" for the implication of f. Note that, in contrast to the 
earlier constructions, this definition uses minimal subsets of K that entail f rather than 
maximal subsets of K that do not entail f.  

Rott's paper in this volume concerns the relation between orderings of epistemic 
entrenchment and the hierarchies over K used in the definition of safe contraction. He 
presents ways of translating between the types of orderings and proves that they are 
equivalent. This is in contrast to what was conjectured by Alchourrón and Makinson 

 
7'-R' is a 'withdrawal function' in the sense of Makinson (1987). 
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(1985) and Gärdenfors (1988). In this way, he completes the map of correspondences 
between (1) the AGM postulates for contractions, (2) the AGM postulates for revisions, 
(3) relational partial meet contractions functions, (4) epistemic entrenchment 
contractions, and (5) safe contractions. 

4.3 Possibility Theory 

Apart from the five areas mentioned in the previous paragraph, possibility theory can be 
added as a sixth area which can be connected to epistemic entrenchment relations, in the 
first place, and thereby also indirectly with belief revisions and contraction. This is the 
topic of Dubois and Prade's contribution to the volume. 

Perhaps the best way of relating possibility theory to the theory of belief revision is to 
start with the qualitative necessity relation (Dubois 1986) which is an ordering ≥c (and 
the corresponding strict relation >c) of sentences satisfying the following axioms: 

(A0) Å >c ^  
(A1) f ≥c y or y ≥c f  
(A2) f ≥c y and y ≥c c imply f ≥c c 
(A3) f ≥c ^ 
(C) if f ≥c y, then, for all c, f 3 c ≥c y 3 c 

A qualitative necessity relation can be generated from a necessity measure N so that f ≥c 
y if and only if N(f) ≥ N(y), where N satisfies the following characteristic property: 

(9) N(f 3 y) = min(N(f),N(y)) 

Dually, one can define a possibility measure P as a function satisfying: 

(10) P(f £ y) = max(P(f),P(y)) 

Indeed, possibility measures are related to necessity measures through the relationship 
N(f) = 1 - P(¬f). The dual qualitative possibility ordering ≥P can be related to ≥c by the 
following equivalence: 

(11) f ≥P y if and only if ¬y ≥c ¬f. 

It has been shown by Dubois and Prade (1991) that a qualitative necessity ordering is 
almost identical to an epistemic entrenchment relation. The exception is that for 
epistemic entrenchment it is requested that Å >c f instead of (A0). 

This connection between possibility theory and epistemic entrenchment forms the 
starting point for the paper by Dubois and Prade in this volume. They represent belief 
states by necessity measures and rewrite the rationality postulates for revision and 
contraction accordingly. They also show how this model of a belief state can be used to 
describe updating with uncertain pieces of evidence. They make some interesting 
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comparisons with Spohn´s (1988) ordinal conditional functions, which form a different 
way of introducing degrees of belief. 

4.4 Updates vs. Revisions 

Katsuno and Mendelzon present an interesting alternative to revision in their 
contribution to this volume. This alternative method is called updating and is also used 
by Morreau in his paper on planning. The basic idea is that one needs to make a 
distinction between two kinds of information and the corresponding changes. On the one 
hand there is new information about a static world. For this kind of information the 
revision process, as it has been described is appropriate. On the other hand, there is new 
information about changes in the world brought about by some agent. For both types, the 
new piece of information may be inconsistent with the current state of belief. However 
Katsuno, Mendelzon and Morreau argue that the revision process is inadequate as a 
model of rational belief change caused by the second type of information. For this kind 
of change an updating procedure is appropriate 

To illustrate their argument, let me borrow an example from Winslett (1988). Suppose 
that all we know in K about a particular room is that there is a table, a book and a 
magazine in it, and that either (b) the book is on the table, or (µ) the magazine is on the 
table, but not both, i.e., the belief state K is essentially Cn((b3¬µ) £ (µ3¬b)). A robot is 
then ordered to put the book on the table, and as a consequence, we learn that b. If we 
change our beliefs by revision we should, according to (Kfi4), end up in a belief state 
that contains b3¬µ since b is consistent with K. But why should we conclude that the 
magazine is not on the table? 

In order to describe how updating works, we must present their version of a possible 
worlds model for belief states. Let L be the language of standard propositional logic and 
let P be the set of propositional letters in L. An interpretation of L is a function I from P 
to the set {T,F} of truth values. This function is extended to L recursively in the standard 
way, so that I(f3y) = T iff I(f) = T and I(y) = T, etc. A model of a sentence f is an 
interpretation I such that I(f) = T. A model of a set of sentences K is an interpretation I 
such that I(f) = T, for all f Î K. Mod(K) denotes the set of all models of K.  

Instead of using an ordering of K^¬f (the maximal consistent subsets of K that don't 
entail ¬f) when determining Kfif, Katsuno and Mendelzon (and several other 
researchers; see Katsuno and Mendelzon's (1989) survey) have proposed to look at an 
ordering of the set of all interpretations and then use this ordering to decide which 
interpretations should constitute models of Kfif, and thus indirectly determine Kfif in 
this way. The intended meaning of such an ordering is that some interpretations that are 
models of f (but not of K) are closer to models of K than other interpretations. Such an 
ordering of interpretations should, of course, be dependent on K. 
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Technically, we assign to each belief set K a pre-ordering ≤K over the set of 
interpretations of L (and a corresponding strict ordering <K).8 Following Katsuno and 
Mendelzon we say that ≤K is faithful9 if these conditions hold: 

(i) ≤K is transitive and reflexive. 
(ii)  If I, J Î Mod(K), then I <K J does not hold. 
(iii) If I Î Mod(K) and J Ï Mod(K), then I <K J. 

If M is a set of interpretations of L, we let Min(M,≤K) denote the set of interpretations I 
which are minimal in M with respect to ≤K. Kfif can now be determined from ≤K as the 
belief set which has exactly Min(Mod({f}),≤K) as its set of models. Katsuno and 
Mendelzon (1989) prove the following general result: 

Theorem 13: A revision function fi satisfies (Kfi1) - (Kfi8) if and only if there exists a 
total faithful ordering ≤K such Mod(Kfif) = Min(Mod({f}),≤K). 

This theorem gives a representation of belief revision in their terminology. Using this 
terminology the difference between revising and updating can be described as follows: 
Methods for revising K by f that satisfy (Kfi1) - (Kfi8) are exactly those that select from 
the models of f that are 'closest' to the models of K. In contrast, update models select, for 
each model I of K, the set of models of f that are closest to I.10 The update Kfif is then 
characterized by the union of all such models. 

The difference between the methods may seem marginal at a first glance, but the 
properties of updating are, in general, quite different from those of revision. In 
connection with the example above, we have already noted that updating violates (Kfi4). 
On the other hand, updating satisfies the following postulate, which is violated by 
revision: 

(12) (K £ K')fif = (Kfif) £ (K'fif) 

This postulates presumes that belief states are modelled by single sentences so that 
disjunctions of belief states are well defined. 

Morreau's paper in this volume is an application to planning of the updating procedure. 
Using this method he presents a framework for modelling reasoning about action. The 
language he uses includes a conditional operator > which is used to represent statements 

 

8To be precise, Katsuno and Mendelson only consider belief sets that can be represented 
by a single sentence from L (i.e., the conjunction of all the beliefs in K). 

9This condition is called 'persistent' in Katsuno and Mendelzon (1989). 

10This method is essentially equivalent to 'imaging' as introduced in a probabilistic 
context by Lewis (1976) and generalized to the context of belief sets in Gärdenfors 
(1988). 
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of the form 'If the agent were to do a, this would result in f being true.' The conditionals 
are analyzed both semantically and axiomatically. By nesting conditionals of this kind he 
can describe the content of sequences of actions, and in this way obtain an elegant way 
of representing planning. 

4.5 Autonomous Belief Revision and Communication 

Postulate (Kfi2) requires that an input f given to a belief state K must be accepted in the 
revision Kfif. Galliers argues in her paper in this volume that this is in conflict with the 
autonomy of the agents having the various belief states. In communication, one agent 
informs another about something, aiming at changing the receiver's belief state. It 
remains, however, the decision of the autonomous receiver whether the information 
should be accepted or not. As Gallier's puts it, "Autonomous agents may or may not 
comply with the recognised intended effects of an utterance on their cognitive states. 
There are no specialised rules dictating what is a cooperative response. Rational 
communicative action must therefore be planned not only as purposive, but as strategic."  

So in order to model belief revisions in a communicative setting one must be able to 
specify whether to accept the contents of an utterance from another agent, as well as how 
to perform the possible revisions caused by the utterance. The underlying principle for 
Galliers is that the acceptability of a new utterance is dependent on the degree of 
coherence of the belief state that would result if the utterance were added. Her model of 
revision is essentially determined by such a coherence ordering, where the degree of 
coherence is defined as maximal derivability of core beliefs. It is not required that there 
be a unique revision, and, furthermore, it is not required that any preferred revision 
incorporate the communicated information. 

Galliers then adds a foundational aspect to the belief revision model by working with 
assumptions of various kinds and justifications for the assumptions. For example, the 
endorsement of an assumption depends on whether it is communicated by a reliable 
source or a spurious source. In this way, her model model of autonomous belief revision 
is a mixture of coherence and foundationalism. The model has been implemented as a 
component of a strategic planner for cooperative dialogue. 

4.6 Conditionals and the Ramsey Test 

There is a close connection between belief revisions and the meaning of conditional 
sentences. The carrying hypothesis is that conditional sentences, in various forms, are 
about changes of states of belief. The form of conditional sentence that is central is "if f 
were the case, then b would be the case" or "if f is the case, then b is (will be) the case," 
where f may or may not contradict what is already accepted in a given epistemic state K. 
If f contradicts what is accepted in K, the conditional is called a counterfactual (relative 
to K), otherwise it is called an open conditional (relative to K).  
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The epistemic semantics for counterfactuals and open conditionals will be based on  
F. P. Ramsey's test for evaluating a conditional sentence. His test can be described as 
follows: In order to find out whether a conditional sentence is acceptable in a given state 
of belief, one first adds the antecedent of the conditional hypothetically to the given 
stock of beliefs. Second, if the antecedent together with the formerly accepted sentences 
leads to a contradiction, then one makes some adjustments, as small as possible without 
modifying the hypothetical belief in the antecedent, such that consistency is maintained. 
Finally, one considers whether or not the consequent of the conditional is accepted in 
this adjusted state of belief.  

Given the analysis of belief revisions in Section 2, we see that it is very natural to 
reformulate the Ramsey test in a more condensed way: 

(RT) f > b Î K iff b Î Kfif 

This test has attracted a great deal of attention as a possible starting point for a formal 
semantics of conditionals. Ginsberg (1986) argues that a formal semantics for counter-
factuals is of great value for many problem areas within AI, in particular since they form 
the core of nonmonotonic inferences. 

Note that the formulation of (RT) presupposes that sentences of the form f > b belong to 
the object language and that they can be elements of the belief sets in a belief revision 
model. Let us call this extended object language L'.  

Some results in Gärdenfors (1978) seem to justify the claim that the Ramsey test can be 
used as a basis for an epistemic semantics of conditionals. However, the list of 
conditions that were used to generate the logic of conditionals does not include (Kfi4) (or 
the full strength of (Kfi8)). An interesting question is whether it is possible to use (RT) 
together with (Kfi4) when analysing the logic of conditionals. With minor qualifications, 
the answer turns out to be no. In order to put the result as strongly as possible, one can 
start from the following preservation condition: 

(KfiP) If ¬f Ï K and y Î K, then y Î Kfif 

It is easy to show that the preservation criterion is essentially equivalent to (Kfi4). 

The Ramsey test and the preservation criterion are each of considerable interest for the 
analysis of the dynamics of belief. Unfortunately, it can be proved that, on the pain of 
triviality, the Ramsey test and the preservation criterion are inconsistent with each other 
(Gärdenfors 1986). 

Let us formulate this result with some care. A background assumption is that the revision 
function is defined for all belief sets.11 Note that in L', sentences containing the 

 

11What is needed for the proof is only the assumption that if K is in the domain of the 
revision function, so are are all expansions K+f. 
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conditional connective '>' will be treated on a par with sentences without this operator. 
The Ramsey test (RT) is, of course, dependent on this assumption. A consequence of 
(RT) that is crucial is the following monotonicity criterion: 

(KfiM)  For all belief sets K and K' and all f, if K 1 K', then Kfif 1 K'fif. 

The conditions on the revision function that will be needed for the proof are (Kfi2) and 
the following very weak criterion, which is one half of (Kfi5): 

(Kfi5w) If K ≠ K^ and Kfif = K^, then 7 ¬f. 

 The final assumption that will be needed for the inconsistency result is that the belief 
revision system is non-trivial. As usual, two propositions f and y are said to be disjoint 
iff 7 ¬(f 3 y). A belief revision system will be said to be non-trivial iff there are at least 
three pairwise disjoint sentences f, y, and c and some belief set K which is consistent 
with all three sentences, i.e., ¬f Ï K, ¬y Ï K, and ¬c Ï K. 

Theorem 14: There is no non-trivial belief revision system that satisfies all the conditions 
(Kfi2), (Kfi5w), (KfiM) and (KfiP). 

It should be noted that the conditional connective '>' is used neither in the formulation of 
the theorem nor in its proof. If (KfiP) is replaced by (Kfi4), then (Kfi2) is not needed for 
the proof of the theorem. 

Corollary: There is no non-trivial belief revision system that satisfies all the conditions 
(Kfi2), (Kfi5w), (RT) and (KfiP). 

The theorem and its corollary show that the Ramsey test (RT) and the preservation 
condition (KfiP) (or, equivalently, (Kfi4)) cannot both be rational criteria for belief 
revisions. However, the Ramsey test has a great deal of appeal, and several ways of 
getting around the impossibility result have been tried. In his paper in this volume, 
Morreau uses updating instead of revision in formulating the Ramsey test (as was noted 
above, updating does not satisfy (Kfi4)) and it is easy to show that this combination is 
consistent.  

Another approach is taken by Cross and Thomason in their paper in this volume. They 
also retain the Ramsey test, but they work with a different logical framework than what 
has been used above. Firstly, they use a four-valued logic which changes the 
accompanying proof theory. Secondly, they restrict revision to atomistic inputs, i.e., the 
only sentences for which the revision process is defined are either atomic sentences or 
negated atomic sentences. 

By restricting the revision procedure in this way, Cross and Thomason show that it is 
now possible to work out a theory of conditionals that satisfies the Ramsey test. 
Furthermore, they show that the theory of nonmonotonic inheritance from Horty, 
Thomason, and Touretzky (1990) can be interpreted as a special case of their logic of 
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conditionals. In this way we find yet another connection between the theory of belief 
revision and other areas of computer science. 
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